39 research outputs found

    An Evolutionary Strategy based on Partial Imitation for Solving Optimization Problems

    Full text link
    In this work we introduce an evolutionary strategy to solve combinatorial optimization tasks, i.e. problems characterized by a discrete search space. In particular, we focus on the Traveling Salesman Problem (TSP), i.e. a famous problem whose search space grows exponentially, increasing the number of cities, up to becoming NP-hard. The solutions of the TSP can be codified by arrays of cities, and can be evaluated by fitness, computed according to a cost function (e.g. the length of a path). Our method is based on the evolution of an agent population by means of an imitative mechanism, we define `partial imitation'. In particular, agents receive a random solution and then, interacting among themselves, may imitate the solutions of agents with a higher fitness. Since the imitation mechanism is only partial, agents copy only one entry (randomly chosen) of another array (i.e. solution). In doing so, the population converges towards a shared solution, behaving like a spin system undergoing a cooling process, i.e. driven towards an ordered phase. We highlight that the adopted `partial imitation' mechanism allows the population to generate solutions over time, before reaching the final equilibrium. Results of numerical simulations show that our method is able to find, in a finite time, both optimal and suboptimal solutions, depending on the size of the considered search space.Comment: 18 pages, 6 figure

    Signal Estimation with Additive Error Metrics in Compressed Sensing

    Full text link
    Compressed sensing typically deals with the estimation of a system input from its noise-corrupted linear measurements, where the number of measurements is smaller than the number of input components. The performance of the estimation process is usually quantified by some standard error metric such as squared error or support set error. In this correspondence, we consider a noisy compressed sensing problem with any arbitrary error metric. We propose a simple, fast, and highly general algorithm that estimates the original signal by minimizing the error metric defined by the user. We verify that our algorithm is optimal owing to the decoupling principle, and we describe a general method to compute the fundamental information-theoretic performance limit for any error metric. We provide two example metrics --- minimum mean absolute error and minimum mean support error --- and give the theoretical performance limits for these two cases. Experimental results show that our algorithm outperforms methods such as relaxed belief propagation (relaxed BP) and compressive sampling matching pursuit (CoSaMP), and reaches the suggested theoretical limits for our two example metrics.Comment: to appear in IEEE Trans. Inf. Theor
    corecore