4,580 research outputs found

    Teaching telecommunication standards: bridging the gap between theory and practice

    Get PDF
    ©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Telecommunication standards have become a reliable mechanism to strengthen collaboration between industry and research institutions to accelerate the evolution of communications systems. Standards are needed to enable cooperation while promoting competition. Within the framework of a standard, the companies involved in the standardization process contribute and agree on appropriate technical specifications to ensure diversity and compatibility, and facilitate worldwide commercial deployment and evolution. Those parts of the system that can create competitive advantages are intentionally left open in the specifications. Such specifications are extensive, complex, and minimalistic. This makes telecommunication standards education a difficult endeavor, but it is much demanded by industry and governments to spur economic growth. This article describes a methodology for teaching wireless communications standards. We define our methodology around six learning stages that assimilate the standardization process and identify key learning objectives for each. Enabled by software-defined radio technology, we describe a practical learning environment that facilitates developing many of the needed technical and soft skills without the inherent difficulty and cost associated with radio frequency components and regulation. Using only open source software and commercial of-the-shelf computers, this environment is portable and can easily be recreated at other educational institutions and adapted to their educational needs and constraints. We discuss our and our students' experiences when employing the proposed methodology to 4G LTE standard education at Barcelona Tech.Peer ReviewedPostprint (author's final draft

    Planning a master's level curriculum according to career space recommendations using concept mapping techniques

    Get PDF
    Nowadays the European Universities are worried about how to adapt higher education to the new European Higher Education Area, as proposed in the Bologna Magna Charta Universitatum of 1998, and signed by 32 European Education Ministers. One of the key points in this higher education reform was the introduction of new Master’s level curricula. These Masters will look for the professional specialization and they will have to be adapted to the specific skills demanded by the society. This paper presents the results from a cooperation project – funded by the AECI (International Cooperation Spanish Agency) and developed between the University of Seville (Spain) and the Catholic University of Asuncion (Paraguay) – by about the planning of a new master’s level curriculum in digital signal processing (DSP) area, taking into account the Bologna principles and the conclusions obtained by the Career Space Consortium. A scientific method from social science, known as concept mapping techniques, was used to perform this planning. Basically, the idea of concept mapping consists of compiling the opinion from actors belonging to different environments (lecturers, researchers, workers, businessmen, etc.) related to DSP applications. The compiled data were statistically computed to cluster the opinions of the different agents. The result will be a master’s level curricula adapted to the environment requirements and the social setting

    Real time speaker recognition using MFCC and VQ

    Get PDF
    Speaker Recognition is a process of automatically recognizing who is speaking on the basis of the individual information included in speech waves. Speaker Recognition is one of the most useful biometric recognition techniques in this world where insecurity is a major threat. Many organizations like banks, institutions, industries etc are currently using this technology for providing greater security to their vast databases.Speaker Recognition mainly involves two modules namely feature extraction and feature matching. Feature extraction is the process that extracts a small amount of data from the speaker’s voice signal that can later be used to represent that speaker. Feature matching involves the actual procedure to identify the unknown speaker by comparing the extracted features from his/her voice input with the ones that are already stored in our speech database.In feature extraction we find the Mel Frequency Cepstrum Coefficients, which are based on the known variation of the human ear’s critical bandwidths with frequency and these, are vector quantized using LBG algorithm resulting in the speaker specific codebook. In feature matching we find the VQ distortion between the input utterance of an unknown speaker and the codebooks stored in our database. Based on this VQ distortion we decide whether to accept/reject the unknown speaker’s identity. The system I implemented in my work is 80% accurate in recognizing the correct speaker.In second phase we implement on the acoustic of Real Time speaker ecognition using mfcc and vq on a TMS320C6713 DSP board. We analyze the workload and identify the most timeconsuming operations
    corecore