35,612 research outputs found

    Mobile Communications Industry Scenarios and Strategic Implications for Network Equipment Vendors

    Get PDF
    Mobile infrastructure markets have changed dramatically during the past years. The industry is experiencing a shift from traditional large-scale, hardware-driven system roll-outs to software and services -driven business models. Also, the telecommunications and internet worlds are colliding in both mobile infrastructure and services domains requiring established network equipment vendors and mobile operators to transform and adapt to the new business environment. This paper utilizes Schoemaker's scenario planning process to reveal critical uncertain elements shaping the future of the industry. Four possible scenarios representing different value systems between industry's key stakeholders are created. After this, five strategic options with differing risk and cost factors for established network equipment vendors are discussed in order to aid firm's strategic planning process. --

    Can open-source projects (re-) shape the SDN/NFV-driven telecommunication market?

    Get PDF
    Telecom network operators face rapidly changing business needs. Due to their dependence on long product cycles they lack the ability to quickly respond to changing user demands. To spur innovation and stay competitive, network operators are investigating technological solutions with a proven track record in other application domains such as open source software projects. Open source software enables parties to learn, use, or contribute to technology from which they were previously excluded. OSS has reshaped many application areas including the landscape of operating systems and consumer software. The paradigmshift in telecommunication systems towards Software-Defined Networking introduces possibilities to benefit from open source projects. Implementing the control part of networks in software enables speedier adaption and innovation, and less dependencies on legacy protocols or algorithms hard-coded in the control part of network devices. The recently proposed concept of Network Function Virtualization pushes the softwarization of telecommunication functionalities even further down to the data plane. Within the NFV paradigm, functionality which was previously reserved for dedicated hardware implementations can now be implemented in software and deployed on generic Commercial Off-The Shelf (COTS) hardware. This paper provides an overview of existing open source initiatives for SDN/NFV-based network architectures, involving infrastructure to orchestration-related functionality. It situates them in a business process context and identifies the pros and cons for the market in general, as well as for individual actors

    Opportunity Recognition in High Tech and Regulatory Environment: A study of product based Indian Telecom start-ups

    Get PDF
    Opportunity recognition forms the first step of entrepreneurship. Off late entrepreneurship research has looked at opportunity recognition from varied lenses with entrepreneurial learning forming the core of most scholarly work. However opportunity recognition in high tech sectors is slightly different due to a high component of knowledge intensiveness inherent in such sectors and has been largely ignored in most work. So, we explore a specific high tech sector in the paper to understand and further the existing concepts within opportunity recognition process. We choose the Indian telecom sector as the context of the study and using an inductive case based approach arrive at conceptual combination as the dominant form of idea generation. The regulatory environment was found to acts as an enabler for the new ideas to flourish. We also bring in the idea of dynamic customization as the driving force behind the venture akin to symbiotic relationship present between organisms in the nature.

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results
    • 

    corecore