33,616 research outputs found

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    Current Challenges and Visions in Music Recommender Systems Research

    Full text link
    Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's fingertip. While today's MRS considerably help users to find interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user--item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. The purpose of this trends and survey article is twofold. We first identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the field. The article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the field

    NAIS: Neural Attentive Item Similarity Model for Recommendation

    Full text link
    Item-to-item collaborative filtering (aka. item-based CF) has been long used for building recommender systems in industrial settings, owing to its interpretability and efficiency in real-time personalization. It builds a user's profile as her historically interacted items, recommending new items that are similar to the user's profile. As such, the key to an item-based CF method is in the estimation of item similarities. Early approaches use statistical measures such as cosine similarity and Pearson coefficient to estimate item similarities, which are less accurate since they lack tailored optimization for the recommendation task. In recent years, several works attempt to learn item similarities from data, by expressing the similarity as an underlying model and estimating model parameters by optimizing a recommendation-aware objective function. While extensive efforts have been made to use shallow linear models for learning item similarities, there has been relatively less work exploring nonlinear neural network models for item-based CF. In this work, we propose a neural network model named Neural Attentive Item Similarity model (NAIS) for item-based CF. The key to our design of NAIS is an attention network, which is capable of distinguishing which historical items in a user profile are more important for a prediction. Compared to the state-of-the-art item-based CF method Factored Item Similarity Model (FISM), our NAIS has stronger representation power with only a few additional parameters brought by the attention network. Extensive experiments on two public benchmarks demonstrate the effectiveness of NAIS. This work is the first attempt that designs neural network models for item-based CF, opening up new research possibilities for future developments of neural recommender systems

    How Algorithmic Confounding in Recommendation Systems Increases Homogeneity and Decreases Utility

    Full text link
    Recommendation systems are ubiquitous and impact many domains; they have the potential to influence product consumption, individuals' perceptions of the world, and life-altering decisions. These systems are often evaluated or trained with data from users already exposed to algorithmic recommendations; this creates a pernicious feedback loop. Using simulations, we demonstrate how using data confounded in this way homogenizes user behavior without increasing utility

    Opening the Black Box: Explaining the Process of Basing a Health Recommender System on the I-Change Behavioral Change Model

    Get PDF
    Recommender systems are gaining traction in healthcare because they can tailor recommendations based on users' feedback concerning their appreciation of previous health-related messages. However, recommender systems are often not grounded in behavioral change theories, which may further increase the effectiveness of their recommendations. This paper's objective is to describe principles for designing and developing a health recommender system grounded in the I-Change behavioral change model that shall be implemented through a mobile app for a smoking cessation support clinical trial. We built upon an existing smoking cessation health recommender system that delivered motivational messages through a mobile app. A group of experts assessed how the system may be improved to address the behavioral change determinants of the I-Change behavioral change model. The resulting system features a hybrid recommender algorithm for computer tailoring smoking cessation messages. A total of 331 different motivational messages were designed using 10 health communication methods. The algorithm was designed to match 58 message characteristics to each user pro le by following the principles of the I-Change model and maintaining the bene ts of the recommender system algorithms. The mobile app resulted in a streamlined version that aimed to improve the user experience, and this system's design bridges the gap between health recommender systems and the use of behavioral change theories. This article presents a novel approach integrating recommender system technology, health behavior technology, and computer-tailored technology. Future researchers will be able to build upon the principles applied in this case study.European Union's Horizon 2020 Research and Innovation Programme under Grant 68112
    corecore