444,676 research outputs found

    Search Me If You Can: Privacy-preserving Location Query Service

    Full text link
    Location-Based Service (LBS) becomes increasingly popular with the dramatic growth of smartphones and social network services (SNS), and its context-rich functionalities attract considerable users. Many LBS providers use users' location information to offer them convenience and useful functions. However, the LBS could greatly breach personal privacy because location itself contains much information. Hence, preserving location privacy while achieving utility from it is still an challenging question now. This paper tackles this non-trivial challenge by designing a suite of novel fine-grained Privacy-preserving Location Query Protocol (PLQP). Our protocol allows different levels of location query on encrypted location information for different users, and it is efficient enough to be applied in mobile platforms.Comment: 9 pages, 1 figure, 2 tables, IEEE INFOCOM 201

    Privacy-Preserving Shortest Path Computation

    Full text link
    Navigation is one of the most popular cloud computing services. But in virtually all cloud-based navigation systems, the client must reveal her location and destination to the cloud service provider in order to learn the fastest route. In this work, we present a cryptographic protocol for navigation on city streets that provides privacy for both the client's location and the service provider's routing data. Our key ingredient is a novel method for compressing the next-hop routing matrices in networks such as city street maps. Applying our compression method to the map of Los Angeles, for example, we achieve over tenfold reduction in the representation size. In conjunction with other cryptographic techniques, this compressed representation results in an efficient protocol suitable for fully-private real-time navigation on city streets. We demonstrate the practicality of our protocol by benchmarking it on real street map data for major cities such as San Francisco and Washington, D.C.Comment: Extended version of NDSS 2016 pape

    Longitude : a privacy-preserving location sharing protocol for mobile applications

    Get PDF
    Location sharing services are becoming increasingly popular. Although many location sharing services allow users to set up privacy policies to control who can access their location, the use made by service providers remains a source of concern. Ideally, location sharing providers and middleware should not be able to access users’ location data without their consent. In this paper, we propose a new location sharing protocol called Longitude that eases privacy concerns by making it possible to share a user’s location data blindly and allowing the user to control who can access her location, when and to what degree of precision. The underlying cryptographic algorithms are designed for GPS-enabled mobile phones. We describe and evaluate our implementation for the Nexus One Android mobile phone

    Visual Localisation of Mobile Devices in an Indoor Environment under Network Delay Conditions

    Get PDF
    Current progresses in home automation and service robotic environment have highlighted the need to develop interoperability mechanisms that allow a standard communication between the two systems. During the development of the DHCompliant protocol, the problem of locating mobile devices in an indoor environment has been investigated. The communication of the device with the location service has been carried out to study the time delay that web services offer in front of the sockets. The importance of obtaining data from real-time location systems portends that a basic tool for interoperability, such as web services, can be ineffective in this scenario because of the delays added in the invocation of services. This paper is focused on introducing a web service to resolve a coordinates request without any significant delay in comparison with the sockets

    Cloud-based desktop services for thin clients

    Get PDF
    Cloud computing and ubiquitous network availability have renewed people's interest in the thin client concept. By executing applications in virtual desktops on cloud servers, users can access any application from any location with any device. For this to be a successful alternative to traditional offline applications, however, researchers must overcome important challenges. The thin client protocol must display audiovisual output fluidly, and the server executing the virtual desktop should have sufficient resources and ideally be close to the user's current location to limit network delay. From a service provider viewpoint, cost reduction is also an important issue

    Revisiting a Privacy-Preserving Location-based Service Protocol using Edge Computing

    Full text link
    Location-based services are getting more popular day by day. Finding nearby stores, proximity-based marketing, on-road service assistance, etc., are some of the services that use location-based services. In location-based services, user information like user identity, user query, and location must be protected. Ma et al. (INFOCOM-BigSecurity 2019) proposed a privacy-preserving location-based service using Somewhat Homomorphic Encryption (SHE). Their protocol uses edge nodes that compute on SHE encrypted location data and determines the kk-nearest points of interest contained in the Location-based Server (LBS) without revealing the original user coordinates to LBS, hence, ensuring privacy of users locations. In this work, we show that the above protocol by Ma et al. has a critical flaw. In particular, we show that their secure comparison protocol has a correctness issue in that it will not lead to correct comparison. A major consequence of this flaw is that straightforward approaches to fix this issue will make their protocol insecure. Namely, the LBS will be able to recover the actual locations of the users in each and every query

    Content and popularity analysis of Tor hidden services

    Get PDF
    Tor hidden services allow running Internet services while protecting the location of the servers. Their main purpose is to enable freedom of speech even in situations in which powerful adversaries try to suppress it. However, providing location privacy and client anonymity also makes Tor hidden services an attractive platform for every kind of imaginable shady service. The ease with which Tor hidden services can be set up has spurred a huge growth of anonymously provided Internet services of both types. In this paper we analyse the landscape of Tor hidden services. We have studied Tor hidden services after collecting 39824 hidden service descriptors on 4th of Feb 2013 by exploiting protocol and implementation flaws in Tor: we scanned them for open ports; in the case of HTTP services, we analysed and classified their content. We also estimated the popularity of hidden services by looking at the request rate for hidden service descriptors by clients. We found that while the content of Tor hidden services is rather varied, the most popular hidden services are related to botnets.Comment: 6 pages, 3 figures, 2 table
    corecore