413,063 research outputs found
Finding Multiple New Optimal Locations in a Road Network
We study the problem of optimal location querying for location based services
in road networks, which aims to find locations for new servers or facilities.
The existing optimal solutions on this problem consider only the cases with one
new server. When two or more new servers are to be set up, the problem with
minmax cost criteria, MinMax, becomes NP-hard. In this work we identify some
useful properties about the potential locations for the new servers, from which
we derive a novel algorithm for MinMax, and show that it is efficient when the
number of new servers is small. When the number of new servers is large, we
propose an efficient 3-approximate algorithm. We verify with experiments on
real road networks that our solutions are effective and attains significantly
better result quality compared to the existing greedy algorithms
Seamless mobility with personal servers
We describe the concept and the taxonomy of personal servers, and their implications in seamless mobility. Personal servers could offer electronic services independently of network availability or quality, provide a greater flexibility in the choice of user access device, and support the key concept of continuous user experience. We describe the organization of mobile and remote personal servers, define three relevant communication modes, and discuss means for users to exploit seamless services on the personal server
Randomized Assignment of Jobs to Servers in Heterogeneous Clusters of Shared Servers for Low Delay
We consider the job assignment problem in a multi-server system consisting of
parallel processor sharing servers, categorized into ()
different types according to their processing capacity or speed. Jobs of random
sizes arrive at the system according to a Poisson process with rate . Upon each arrival, a small number of servers from each type is
sampled uniformly at random. The job is then assigned to one of the sampled
servers based on a selection rule. We propose two schemes, each corresponding
to a specific selection rule that aims at reducing the mean sojourn time of
jobs in the system.
We first show that both methods achieve the maximal stability region. We then
analyze the system operating under the proposed schemes as which
corresponds to the mean field. Our results show that asymptotic independence
among servers holds even when is finite and exchangeability holds only
within servers of the same type. We further establish the existence and
uniqueness of stationary solution of the mean field and show that the tail
distribution of server occupancy decays doubly exponentially for each server
type. When the estimates of arrival rates are not available, the proposed
schemes offer simpler alternatives to achieving lower mean sojourn time of
jobs, as shown by our numerical studies
- …
