413,063 research outputs found

    Finding Multiple New Optimal Locations in a Road Network

    Full text link
    We study the problem of optimal location querying for location based services in road networks, which aims to find locations for new servers or facilities. The existing optimal solutions on this problem consider only the cases with one new server. When two or more new servers are to be set up, the problem with minmax cost criteria, MinMax, becomes NP-hard. In this work we identify some useful properties about the potential locations for the new servers, from which we derive a novel algorithm for MinMax, and show that it is efficient when the number of new servers is small. When the number of new servers is large, we propose an efficient 3-approximate algorithm. We verify with experiments on real road networks that our solutions are effective and attains significantly better result quality compared to the existing greedy algorithms

    Seamless mobility with personal servers

    Get PDF
    We describe the concept and the taxonomy of personal servers, and their implications in seamless mobility. Personal servers could offer electronic services independently of network availability or quality, provide a greater flexibility in the choice of user access device, and support the key concept of continuous user experience. We describe the organization of mobile and remote personal servers, define three relevant communication modes, and discuss means for users to exploit seamless services on the personal server

    Randomized Assignment of Jobs to Servers in Heterogeneous Clusters of Shared Servers for Low Delay

    Get PDF
    We consider the job assignment problem in a multi-server system consisting of NN parallel processor sharing servers, categorized into MM (N\ll N) different types according to their processing capacity or speed. Jobs of random sizes arrive at the system according to a Poisson process with rate NλN \lambda. Upon each arrival, a small number of servers from each type is sampled uniformly at random. The job is then assigned to one of the sampled servers based on a selection rule. We propose two schemes, each corresponding to a specific selection rule that aims at reducing the mean sojourn time of jobs in the system. We first show that both methods achieve the maximal stability region. We then analyze the system operating under the proposed schemes as NN \to \infty which corresponds to the mean field. Our results show that asymptotic independence among servers holds even when MM is finite and exchangeability holds only within servers of the same type. We further establish the existence and uniqueness of stationary solution of the mean field and show that the tail distribution of server occupancy decays doubly exponentially for each server type. When the estimates of arrival rates are not available, the proposed schemes offer simpler alternatives to achieving lower mean sojourn time of jobs, as shown by our numerical studies
    corecore