909 research outputs found

    SEUSS: rapid serverless deployment using environment snapshots

    Full text link
    Modern FaaS systems perform well in the case of repeat executions when function working sets stay small. However, these platforms are less effective when applied to more complex, large-scale and dynamic workloads. In this paper, we introduce SEUSS (serverless execution via unikernel snapshot stacks), a new system-level approach for rapidly deploying serverless functions. Through our approach, we demonstrate orders of magnitude improvements in function start times and cacheability, which improves common re-execution paths while also unlocking previously-unsupported large-scale bursty workloads.Published versio

    On-demand serverless video surveillance with optimal deployment of deep neural networks

    Get PDF
    [EN] We present an approach to optimally deploy Deep Neural Networks (DNNs) in serverless cloud architectures. A serverless architecture allows running code in response to events, automatically managing the required computing resources. However, these resources have limitations in terms of execution environment (CPU only), cold starts, space, scalability, etc. These limitations hinder the deployment of DNNs, especially considering that fees are charged according to the employed resources and the computation time. Our deployment approach is comprised of multiple decoupled software layers that allow effectively managing multiple processes, such as business logic, data access, and computer vision algorithms that leverage DNN optimization techniques. Experimental results in AWS Lambda reveal its potential to build cost-effective ondemand serverless video surveillance systems.This work has been partially supported by the program ELKARTEK 2019 of the Basque Government under project AUTOLIB

    Rise of the Planet of Serverless Computing: A Systematic Review

    Get PDF
    Serverless computing is an emerging cloud computing paradigm, being adopted to develop a wide range of software applications. It allows developers to focus on the application logic in the granularity of function, thereby freeing developers from tedious and error-prone infrastructure management. Meanwhile, its unique characteristic poses new challenges to the development and deployment of serverless-based applications. To tackle these challenges, enormous research efforts have been devoted. This paper provides a comprehensive literature review to characterize the current research state of serverless computing. Specifically, this paper covers 164 papers on 17 research directions of serverless computing, including performance optimization, programming framework, application migration, multi-cloud development, testing and debugging, etc. It also derives research trends, focus, and commonly-used platforms for serverless computing, as well as promising research opportunities

    FedLesScan: Mitigating Stragglers in Serverless Federated Learning

    Full text link
    Federated Learning (FL) is a machine learning paradigm that enables the training of a shared global model across distributed clients while keeping the training data local. While most prior work on designing systems for FL has focused on using stateful always running components, recent work has shown that components in an FL system can greatly benefit from the usage of serverless computing and Function-as-a-Service technologies. To this end, distributed training of models with serverless FL systems can be more resource-efficient and cheaper than conventional FL systems. However, serverless FL systems still suffer from the presence of stragglers, i.e., slow clients due to their resource and statistical heterogeneity. While several strategies have been proposed for mitigating stragglers in FL, most methodologies do not account for the particular characteristics of serverless environments, i.e., cold-starts, performance variations, and the ephemeral stateless nature of the function instances. Towards this, we propose FedLesScan, a novel clustering-based semi-asynchronous training strategy, specifically tailored for serverless FL. FedLesScan dynamically adapts to the behaviour of clients and minimizes the effect of stragglers on the overall system. We implement our strategy by extending an open-source serverless FL system called FedLess. Moreover, we comprehensively evaluate our strategy using the 2nd generation Google Cloud Functions with four datasets and varying percentages of stragglers. Results from our experiments show that compared to other approaches FedLesScan reduces training time and cost by an average of 8% and 20% respectively while utilizing clients better with an average increase in the effective update ratio of 17.75%.Comment: IEEE BigData 202
    • …
    corecore