1,002 research outputs found

    Book reports

    Get PDF

    Alpha-divergence minimization for deep Gaussian processes

    Full text link
    This paper proposes the minimization of α-divergences for approximate inference in the context of deep Gaussian processes (DGPs). The proposed method can be considered as a generalization of variational inference (VI) and expectation propagation (EP), two previously used methods for approximate inference in DGPs. Both VI and EP are based on the minimization of the Kullback-Leibler divergence. The proposed method is based on a scalable version of power expectation propagation, a method that introduces an extra parameter α that specifies the targeted α-divergence to be optimized. In particular, such a method can recover the VI solution when α → 0 and the EP solution when α → 1. An exhaustive experimental evaluation shows that the minimization of α-divergences via the proposed method is feasible in DGPs and that choosing intermediate values of the α parameter between 0 and 1 can give better results in some problems. This means that one can improve the results of VI and EP when training DGPs. Importantly, the proposed method allows for stochastic optimization techniques, making it able to address datasets with several millions of instancesThe authors gratefully acknowledge the use of the facilities of Centro de Computación Científica (CCC) at Universidad Autónoma de Madrid. The authors also acknowledge financial support from Spanish Plan Nacional I+D+i, Ministerio de Ciencia e Innovación, grant PID2019-106827GB-I00 / AEI / 10.13039/50110001103

    Extending expectation propagation for graphical models

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2005.Includes bibliographical references (p. 101-106).Graphical models have been widely used in many applications, ranging from human behavior recognition to wireless signal detection. However, efficient inference and learning techniques for graphical models are needed to handle complex models, such as hybrid Bayesian networks. This thesis proposes extensions of expectation propagation, a powerful generalization of loopy belief propagation, to develop efficient Bayesian inference and learning algorithms for graphical models. The first two chapters of the thesis present inference algorithms for generative graphical models, and the next two propose learning algorithms for conditional graphical models. First, the thesis proposes a window-based EP smoothing algorithm for online estimation on hybrid dynamic Bayesian networks. For an application in wireless communications, window-based EP smoothing achieves estimation accuracy comparable to sequential Monte Carlo methods, but with less than one-tenth computational cost. Second, it develops a new method that combines tree-structured EP approximations with the junction tree for inference on loopy graphs. This new method saves computation and memory by propagating messages only locally to a subgraph when processing each edge in the entire graph. Using this local propagation scheme, this method is not only more accurate, but also faster than loopy belief propagation and structured variational methods. Third, it proposes predictive automatic relevance determination (ARD) to enhance classification accuracy in the presence of irrelevant features. ARD is a Bayesian technique for feature selection.(cont.) The thesis discusses the overfitting problem associated with ARD, and proposes a method that optimizes the estimated predictive performance, instead of maximizing the model evidence. For a gene expression classification problem, predictive ARD outperforms previous methods, including traditional ARD as well as support vector machines combined with feature selection techniques. Finally, it presents Bayesian conditional random fields (BCRFs) for classifying interdependent and structured data, such as sequences, images or webs. BCRFs estimate the posterior distribution of model parameters and average prediction over this posterior to avoid overfitting. For the problems of frequently-asked-question labeling and of ink recognition, BCRFs achieve superior prediction accuracy over conditional random fields trained with maximum likelihood and maximum a posteriori criteria.by Yuan Qi.Ph.D

    Computationally Comparing Biological Networks and Reconstructing Their Evolution

    Get PDF
    Biological networks, such as protein-protein interaction, regulatory, or metabolic networks, provide information about biological function, beyond what can be gleaned from sequence alone. Unfortunately, most computational problems associated with these networks are NP-hard. In this dissertation, we develop algorithms to tackle numerous fundamental problems in the study of biological networks. First, we present a system for classifying the binding affinity of peptides to a diverse array of immunoglobulin antibodies. Computational approaches to this problem are integral to virtual screening and modern drug discovery. Our system is based on an ensemble of support vector machines and exhibits state-of-the-art performance. It placed 1st in the 2010 DREAM5 competition. Second, we investigate the problem of biological network alignment. Aligning the biological networks of different species allows for the discovery of shared structures and conserved pathways. We introduce an original procedure for network alignment based on a novel topological node signature. The pairwise global alignments of biological networks produced by our procedure, when evaluated under multiple metrics, are both more accurate and more robust to noise than those of previous work. Next, we explore the problem of ancestral network reconstruction. Knowing the state of ancestral networks allows us to examine how biological pathways have evolved, and how pathways in extant species have diverged from that of their common ancestor. We describe a novel framework for representing the evolutionary histories of biological networks and present efficient algorithms for reconstructing either a single parsimonious evolutionary history, or an ensemble of near-optimal histories. Under multiple models of network evolution, our approaches are effective at inferring the ancestral network interactions. Additionally, the ensemble approach is robust to noisy input, and can be used to impute missing interactions in experimental data. Finally, we introduce a framework, GrowCode, for learning network growth models. While previous work focuses on developing growth models manually, or on procedures for learning parameters for existing models, GrowCode learns fundamentally new growth models that match target networks in a flexible and user-defined way. We show that models learned by GrowCode produce networks whose target properties match those of real-world networks more closely than existing models
    corecore