682,688 research outputs found
Lifelong Sequential Modeling with Personalized Memorization for User Response Prediction
User response prediction, which models the user preference w.r.t. the
presented items, plays a key role in online services. With two-decade rapid
development, nowadays the cumulated user behavior sequences on mature Internet
service platforms have become extremely long since the user's first
registration. Each user not only has intrinsic tastes, but also keeps changing
her personal interests during lifetime. Hence, it is challenging to handle such
lifelong sequential modeling for each individual user. Existing methodologies
for sequential modeling are only capable of dealing with relatively recent user
behaviors, which leaves huge space for modeling long-term especially lifelong
sequential patterns to facilitate user modeling. Moreover, one user's behavior
may be accounted for various previous behaviors within her whole online
activity history, i.e., long-term dependency with multi-scale sequential
patterns. In order to tackle these challenges, in this paper, we propose a
Hierarchical Periodic Memory Network for lifelong sequential modeling with
personalized memorization of sequential patterns for each user. The model also
adopts a hierarchical and periodical updating mechanism to capture multi-scale
sequential patterns of user interests while supporting the evolving user
behavior logs. The experimental results over three large-scale real-world
datasets have demonstrated the advantages of our proposed model with
significant improvement in user response prediction performance against the
state-of-the-arts.Comment: SIGIR 2019. Reproducible codes and datasets:
https://github.com/alimamarankgroup/HPM
Graph-based Modelling of Concurrent Sequential Patterns
Structural relation patterns have been introduced recently to extend the search for complex patterns often hidden behind large sequences of data. This has motivated a novel approach to sequential patterns post-processing and a corresponding data mining method was proposed for Concurrent Sequential Patterns (ConSP). This article refines the approach in the context of ConSP modelling, where a companion graph-based model is devised as an extension of previous work. Two new modelling methods are presented here together with a construction algorithm, to complete the transformation of concurrent sequential patterns to a ConSP-Graph representation. Customer orders data is used to demonstrate the effectiveness of ConSP mining while synthetic sample data highlights the strength of the modelling technique, illuminating the theories developed
Sequential Patterns Post-processing for Structural Relation Patterns Mining
Sequential patterns mining is an important data-mining technique used to identify frequently observed sequential
occurrence of items across ordered transactions over time. It has been extensively studied in the literature, and there
exists a diversity of algorithms. However, more complex structural patterns are often hidden behind sequences.
This article begins with the introduction of a model for the representation of sequential patterns—Sequential
Patterns Graph—which motivates the search for new structural relation patterns. An integrative framework for
the discovery of these patterns–Postsequential Patterns Mining–is then described which underpins the postprocessing
of sequential patterns. A corresponding data-mining method based on sequential patterns postprocessing
is proposed and shown to be effective in the search for concurrent patterns. From experiments conducted on three
component algorithms, it is demonstrated that sequential patterns-based concurrent patterns mining provides
an efficient method for structural knowledge discover
CloSpan Sequential Pattern Mining for Books Recommendation System in Petra Christian University Library
Petra Christian University (PCU) Library has been using website for their books search system. To further improve the service, it is necessary to develop the automatic system which can recommends the book or the correlation or the book which often being lend at the same time or sequentially by prospective borrowers. The algorithm used to explore the lending sequential patterns is CloSpan Sequential Mining algorithm. The output generated by this application is closed sequential pattern rules
and the tree of sequential patterns. They can be used as a reference to establish a list of recommended related books. From the test results it can be concluded that the more data and smaller minimum support, the longer the process takes, and the more patterns that is produced. From the questionnaire outcome that are distributed to employees and users of the library can be concluded that the system can create right recommendations and useful
A Constraint Programming Approach for Mining Sequential Patterns in a Sequence Database
Constraint-based pattern discovery is at the core of numerous data mining
tasks. Patterns are extracted with respect to a given set of constraints
(frequency, closedness, size, etc). In the context of sequential pattern
mining, a large number of devoted techniques have been developed for solving
particular classes of constraints. The aim of this paper is to investigate the
use of Constraint Programming (CP) to model and mine sequential patterns in a
sequence database. Our CP approach offers a natural way to simultaneously
combine in a same framework a large set of constraints coming from various
origins. Experiments show the feasibility and the interest of our approach
An efficient parallel method for mining frequent closed sequential patterns
Mining frequent closed sequential pattern (FCSPs) has attracted a great deal of research attention, because it is an important task in sequences mining. In recently, many studies have focused on mining frequent closed sequential patterns because, such patterns have proved to be more efficient and compact than frequent sequential patterns. Information can be fully extracted from frequent closed sequential patterns. In this paper, we propose an efficient parallel approach called parallel dynamic bit vector frequent closed sequential patterns (pDBV-FCSP) using multi-core processor architecture for mining FCSPs from large databases. The pDBV-FCSP divides the search space to reduce the required storage space and performs closure checking of prefix sequences early to reduce execution time for mining frequent closed sequential patterns. This approach overcomes the problems of parallel mining such as overhead of communication, synchronization, and data replication. It also solves the load balance issues of the workload between the processors with a dynamic mechanism that re-distributes the work, when some processes are out of work to minimize the idle CPU time.Web of Science5174021739
- …
