3 research outputs found

    Machine Learning Algorithms for Smart Data Analysis in Internet of Things Environment: Taxonomies and Research Trends

    Get PDF
    Machine learning techniques will contribution towards making Internet of Things (IoT) symmetric applications among the most significant sources of new data in the future. In this context, network systems are endowed with the capacity to access varieties of experimental symmetric data across a plethora of network devices, study the data information, obtain knowledge, and make informed decisions based on the dataset at its disposal. This study is limited to supervised and unsupervised machine learning (ML) techniques, regarded as the bedrock of the IoT smart data analysis. This study includes reviews and discussions of substantial issues related to supervised and unsupervised machine learning techniques, highlighting the advantages and limitations of each algorithm, and discusses the research trends and recommendations for further study

    A unified fused Lasso approach for sparse and blocky feature selection in regression and classification

    Full text link
    In many applications, sparse and blocky coefficients often occur in regression and classification problems. The fused Lasso was designed to recover these sparse structured features especially when the design matrix encounters the situation of ultrahigh dimension. Quantile loss is well known as a robust loss function in regression and classification. In this paper, we combine quantile loss and fused Lasso penalty together to produce quantile fused Lasso which can achieve sparse and blocky feature selection in both regression and classification. Interestingly, our proposed model has the unified optimization formula for regression and classification. For ultrahigh dimensional collected data, we derive multi-block linearized alternating direction method of multipliers (LADMM) to deal with it. Moreover, we prove convergence and derive convergence rates of the proposed LADMM algorithm through an elegant method. Note that the algorithm can be easily extended to solve many existing fused Lasso models. Finally, we present some numerical results for several synthetic and real world examples, which illustrate the robustness, scalability, and accuracy of the proposed method
    corecore