4 research outputs found

    Sequential limiting in continuous and discontinuous Galerkin methods for the Euler equations

    Get PDF
    We present a new approach to enforcing local maximum principles in finite element schemes for the compressible Euler equations. In contrast to synchronized limiting techniques for systems of conservation laws, the density, momentum, and total energy are constrained in a sequential manner which guarantees positivity preservation for the pressure and internal energy. After the density limiting step, the total energy and momentum are adjusted to incorporate the irreversible effect of density changes. Then the corresponding antidiffusive corrections are limited to satisfy inequality constraints for the total and kinetic energy. The same element-based limiting strategy is employed in the context of continuous and discontinuous Galerkin methods. The sequential nature of the new limiting procedure makes it possible to achieve crisp resolution of contact discontinuities while using sharp local bounds in the energy constraints. A numerical study is performed for piecewise-linear finite element discretizations of 1D and 2D test problems

    Frame-invariant directional vector limiters for discontinuous Galerkin methods

    Get PDF
    Second and higher order numerical approximations of conservation laws for vector fields call for the use of limiting techniques based on generalized monotonicity criteria. In this paper, we introduce a family of directional vertexbased slope limiters for tensor-valued gradients of formally second-order accurate piecewise-linear discontinuous Galerkin (DG) discretizations. The proposed methodology enforces local maximum principles for scalar products corresponding to projections of a vector field onto the unit vectors of a frame-invariant orthogonal basis. In particular, we consider anisotropic limiters based on singular value decompositions and the Gram-Schmidt orthogonalization procedure. The proposed extension to hyperbolic systems features a sequential limiting strategy and a global invariant domain fix. The pros and cons of different approaches to vector limiting are illustrated by the results of numerical studies for the two-dimensional shallow water equations and for the Euler equations of gas dynamics
    corecore