5,625 research outputs found

    Sequential Dimensionality Reduction for Extracting Localized Features

    Full text link
    Linear dimensionality reduction techniques are powerful tools for image analysis as they allow the identification of important features in a data set. In particular, nonnegative matrix factorization (NMF) has become very popular as it is able to extract sparse, localized and easily interpretable features by imposing an additive combination of nonnegative basis elements. Nonnegative matrix underapproximation (NMU) is a closely related technique that has the advantage to identify features sequentially. In this paper, we propose a variant of NMU that is particularly well suited for image analysis as it incorporates the spatial information, that is, it takes into account the fact that neighboring pixels are more likely to be contained in the same features, and favors the extraction of localized features by looking for sparse basis elements. We show that our new approach competes favorably with comparable state-of-the-art techniques on synthetic, facial and hyperspectral image data sets.Comment: 24 pages, 12 figures. New numerical experiments on synthetic data sets, discussion about the convergenc

    History Matching Using Principal Component Analysis

    Get PDF
    Imperial Users onl

    Classification of sporting activities using smartphone accelerometers

    Get PDF
    In this paper we present a framework that allows for the automatic identification of sporting activities using commonly available smartphones. We extract discriminative informational features from smartphone accelerometers using the Discrete Wavelet Transform (DWT). Despite the poor quality of their accelerometers, smartphones were used as capture devices due to their prevalence in todayā€™s society. Successful classification on this basis potentially makes the technology accessible to both elite and non-elite athletes. Extracted features are used to train different categories of classifiers. No one classifier family has a reportable direct advantage in activity classification problems to date; thus we examine classifiers from each of the most widely used classifier families. We investigate three classification approaches; a commonly used SVM-based approach, an optimized classification model and a fusion of classifiers. We also investigate the effect of changing several of the DWT input parameters, including mother wavelets, window lengths and DWT decomposition levels. During the course of this work we created a challenging sports activity analysis dataset, comprised of soccer and field-hockey activities. The average maximum F-measure accuracy of 87% was achieved using a fusion of classifiers, which was 6% better than a single classifier model and 23% better than a standard SVM approach

    Localized anomaly detection via hierarchical integrated activity discovery

    Get PDF
    2014 Spring.Includes bibliographical references.With the increasing number and variety of camera installations, unsupervised methods that learn typical activities have become popular for anomaly detection. In this thesis, we consider recent methods based on temporal probabilistic models and improve them in multiple ways. Our contributions are the following: (i) we integrate the low level processing and the temporal activity modeling, showing how this feedback improves the overall quality of the captured information, (ii) we show how the same approach can be taken to do hierarchical multi-camera processing, (iii) we use spatial analysis of the anomalies both to perform local anomaly detection and to frame automatically the detected anomalies. We illustrate the approach on both traffic data and videos coming from a metro station. We also investigate the application of topic models in Brain Computing Interfaces for Mental Task classification. We observe a classification accuracy of up to 68% for four Mental Tasks on individual subjects
    • ā€¦
    corecore