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Abstract 
In the oil and gas industry, investment decisions are made based on predictions of reservoir performance. The accuracy of such 

predictions depends on the model being able to simulate past production behaviour. This is known as the history matching 

process, wherein the tuning of geostatistical parameters are undertaken so as to arrive at a model which can simulate the 

observed dynamic data available from the wells. Traditionally this process is done by trial and error, where the uncertain 

parameters are varied until a satisfactory match is obtained. But this process is highly time consuming and tedious and since 

the history matched model is non-unique the resultant match may give poor predictions of future production. Therefore, in 

recent years studies have been conducted to test the applicability of stochastic algorithms, gradient-based methods, streamline 

based methods and Kalman filter approaches to the history matching process. In this study one such approach, Linear Principal 

Component Analysis, has been discussed. 

 

Linear Principal Component Analysis (PCA) is a stochastic approach which has been used in face recognition and image 

compression, and is a common technique for finding patterns in data of high dimension. The central idea of PCA is to extract 

the most important information from the data-set and compress the size of the data-set, without much loss of information 

(Jolliffe). This is achieved by using linear transformations that preserve the degree of freedom that describe the largest 

variation and eliminates those that describe small variations. The retained variables, known as principal components, provide a 

simple and efficient means for imposing the geological constraints. The resulting history matched model can then be expected 

to provide more accurate forecasts about future predictions. 

 

The PCA approach is applied to a geologically complex reservoir, with porosity, permeability, net-to-gross and fault 

transmissibility multipliers as the uncertain parameters. The report discusses how PCA is employed to create a model 

representation in the reduced dimensional parameter space; this re-parameterized model is history matched using an 

optimization algorithm. 

 

This study has provided insights into the workings of PCA for the history matching process. PCA holds much promise to 

become a standalone tool for the history matching process, but this requires future investigation into the bottlenecks. Primary 

of these is to better understand the relationship between the choice of priors and loss in information during dimension 

reduction, and to update the framework of the optimization algorithm to perform robustly and efficiently. 

 

Introduction 

The history matching process is an inverse problem to find a model that closely matches the historical reservoir performance. It 

is a key component of the closed-loop reservoir management, with the idea of maximizing the reservoir performance. In this 

process real-time surface and downhole production data provide continuous input to the history matching algorithm; and this 

calls for automated history matching techniques. Although several approaches have been investigated actively - stochastic 

algorithms (Hu et al. 2001; Caers 2003), gradient-based methods (Chen et al. 1974; Chavent et al. 1975), streamline based 

methods (Agarwal and Blunt 2003; Cheng et al. 2004) and Kalman filter approaches (Geir et al. 2003; Gao et al. 2005), in 

practice the history matching is still often done manually. This suggests that new developments are still required to better 

understand the need and provide a robust, efficient approach for this problem. One approach that has received a lot of attention 

is Ensemble Kalman filtering. A related method, Linear Principal Component Analysis (PCA) (Gavalas et al. 1976; Sarma et 

al. 2006), also uses an ensemble representation and is used in this study for the purpose of history matching. 

 

Often in the history matching process, the geological constraints are usually ignored due to lack of an efficient 

mechanism for imposing them. This results in models that does not have a good estimation of these parameters, and as such 
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will lead to discrepancy in the forecast for the performance of the reservoir. Linear Principal Component Analysis (PCA) 

approach provides an efficient way of imposing these constraints, under a linear approximation, when the uncertainty in prior 

model is expressed as a collection of possible geological realizations. The result is a geologically constrained history matched 

model, on which more reliable predictions of the future performance can be made. 

 

The PCA methodology had already been applied to the Brugge test case (Peters et al. 2010), and the results achieved 

with this had the lowest estimation error when run against the truth model (Dombrowsky et al. 2011) . In the current state the 

algorithm takes porosity, permeability and net-to-gross as input parameters. This work deals with expanding the current state of 

the algorithm to incorporate fault transmissibility multiplier into the workflow, which is subsequently applied to a test model. 

The test model is highly faulted with 25 year production history, so presents a good complex reservoir for the methodology to 

be tested. 

 

The report firstly explains the test model; the geostatistical properties are stated with a brief description of the 

workflow employed to generate the priors. The PCA approach as applied to the reservoir simulation is then explained with 

detailed description on how the dimension reduction takes place; and the information lost due to this dimension reduction. The 

optimization algorithm is then run on this re-parameterized model to arrive at the history matched results. The results are 

analysed in detail with the problem areas in the algorithm identified.  

 

The work was conducted using Petrel 2011.1; the PCA algorithm was prototyped using Ocean and Matlab. Eclipse 

2011.1 was used for reservoir simulation. 

 

Model Description 

The test model is a synthetic in-house reservoir model with a 25 year of production data. The model is highly faulted with 23 

faults in total. The model is a rhombus shaped reservoir with aquifers at the western, eastern and southern edges of the 

reservoir. The reservoir is an undersaturated oil reservoir, so a two-phase simulation was sufficient. The original high-

resolution model consists of 2.5 million cells (325 x 261 x 29). The upscaled model has 55104 cells (48 x 41 x 28). The 

upscaling was performed arithmetically for porosity and with directional averaging for a diagonal tensor for permeability. The 

reservoir has 62 wells (56 producers and 6 injectors); some producers were turned into injectors during the life of the reservoir. 

The fluid and rock properties are described in the Table 1 and the model with the well location is shown in Figure 1. 

 

Overview of the reservoir parameters 
Initialization 4278 psi at 3000 m depth 
Pore Compressibility 4.5 x 10

-6
 psi

-1
 

Density (lbm/ft
3
) Water:63.7

                                                    
Oil:50 

Compressibility (psi
-1
) Water:2.8 x 10

-6                  
              Oil:9.3 x 10

-6
 

Viscosity (cp) Water:0.4                                    Oil:0.6 
Well Constraints Producers Minimum BHP = 1160 psi 

Injectors Maximum BHP = 5365 psi 

Table 1 Overview of the reservoir simulation parameters. 

 

For the purpose of using PCA on the model for dimension reduction, realizations had to be generated with different 

values of geostatistical parameters (porosity, permeability and net-to-gross). These realizations describe the uncertainty in the 

geological model as wells as define the constraints which are to be applied with respect to these parameters. To generate these 

realizations two-point geostatistical (Sequential Gaussian Simulation) approach, which generates parameters with a Gaussian 

distribution; was employed. Various approaches had to be tried to generate these realizations as they directly affect the retained 

information after dimension reduction. Prior models (realizations) were created with different values for the geostatistical 

parameters, which were randomly generated using a Monte Carlo Simulator. A brief summary of the methodology of how 

these realizations are created in a Petrel workflow is explained in the Appendix B. 100 realizations were generated for this 

particular model. These realizations, together with the production history for the wells (BHP, oil and water production rates, 

and water injection rates), form the input for the history matching process. 
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Figure 1 Aerial view of the synthetic test model. 

 

 

Linear Principal Component Analysis – Dimension Reduction 

Linear Principal Component Analysis (PCA) is a statistical technique that allows us to analyze interdependencies in data sets 

with a large number of variables and describe these variances using a smaller number of ‘latent variables’ known as Principal 

Components. The uncertainty in the 3D geological model arises from the different values the geostatistical parameters can take 

consistent with the data (logs, well test). These uncertainties are described by generating different realizations of the model 

known as priors. The latent variables constructed are uncorrelated with unit-normal distributions. The space of latent variables 

is known as feature space, while the original variables lie in the model space. New models are generated by mapping these 

latent variables back into the model space. This section will mainly deal with the dimension reduction as applied to the 

reservoir model, through the linear mapping between the model and feature space. 

 

To start with, the reservoir model can be thought of in terms of geometrical concepts. A model is input to the 

simulator, which can be expressed as a vector of properties (porosity, permeability, net-to-gross). Every cell of the model will 

take a unique value of the parameter; and with different realizations generated to represent the uncertainty, this vector can be 

considered as point in an extremely-high dimensional space (usually of the order of thousands or millions). The space in which 

this point resides consists of all possible inputs and is known as the model space. The priors, when mapped on to this space, 

form a cloud of points which in the case of Gaussian distribution is in the shape of a multi-dimensional ellipse. PCA expresses 

the uncertainty in terms of a new coordinate system whose axes are aligned to the major axis of the ellipsoid, while the 

direction associated with the minor axis are eliminated, thereby reducing the dimensionality. All of the models in the original 

space thus lie closer in the reduced space. The degree of closeness is controlled by the variance threshold that defines which 

dimensions are eliminated. Figure 2 below shows the dimension reduction after the eigenvectors with lesser significance have 

been ignored; this process has been explained later on. 
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The basic methodology of PCA as explained below is representing the features of the input data set which is of higher 

dimensionality into a lower dimensionality space, on which the optimization algorithms can be run robustly to look for 

optimum values of the uncertain parameters. When these values are found they are mapped back on to the original model space 

and simulation is then run, resulting in the history matched case. PCA as applied to the history matching process only deals 

with finding correlations among the input data set such that the outputs that we get are bound by the constraints imposed on by 

the input parameters. 

 

 

 
Figure 2 Dimension reduction as shown by change in the co-ordinate system from model space to feature space. 

 

There are several methods to calculate the principal components, explained below is one of them which has been employed in 

this study. 

 

I. Basis - The goal of PCA is to create the most meaningful basis to re-express a noisy data set. The model has 55104 

active cells, and taking 5 parameters (porosity ∅; permeability kx, ky, kz; net-to-gross) gives 275520 dimensions (M); 

the vector Y denotes a set of parameters for one cell. This represents a vector in a 5 dimensional space. So to represent 

1 model we will need 55104 such vectors. 

 

𝑃 =

(

 
 

𝑘𝑥
𝑘𝑦
𝑘𝑧
∅
𝑛𝑡𝑔)

 
 
   ;    𝑍 = (

𝑃1
⋮

𝑃55104

) 

 

This represents one model which is a vector in 275520 dimensions. A total of 100 (N) prior realizations have been 

generated. So finally our data set becomes, 

 

𝑋 = [𝑍1 ⋯ 𝑍100] 
 

These are represented in matrix form X (M x N), where each column represent one realization of the model. Mean-

adjusted data set (B) is calculated by subtracting the mean vector 𝝁 from X. Basically 𝝁 is the column matrix of the 

mean of all rows (thus the mean of parameter of respective cells across all 100 priors). Where h is 1 x N row vector of 

all 1’s. 

 

𝜇 =
1

𝑁
∑𝑍𝑖  

𝑁

𝑖=1

   ;     𝐵 = 𝑋 − 𝜇ℎ 

 

II. Covariance & Eigen-Decomposition - The covariance measures the degree of linear relationship between two 

variables. A large (small) value indicates high (low) redundancy. The covariance matrix is calculated as, 
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𝐶 =
1

𝑁
∑𝐵.𝐵𝑇  

 

The covariance matrix (C) generated is a square matrix (M x M), which is also symmetric. This matrix 

characterises the scatter of the data. The eigen decomposition performed on the covariance matrix results in 

orthonormal eigenvectors (of length 1) and non-negative eigenvalues, 

 

𝐶𝑉 = 𝐷𝑉    ;     𝐶 = 𝑉𝐷𝑉𝑇 

 

where V is a matrix, with each column representing an eigenvector vi and D is a diagonal matrix of eigenvalues λi 

(where the diagonal elements are the eigenvalues and all other elements are 0). The vectors vi are the principal 

components of X. Besides being perpendicular to each other, the eigenvector also provide us with information about 

the patterns in the data. There is a direct relationship between eigenvalues and eigenvectors; the eigenvector 

associated with the highest eigenvalue denotes the largest variance in the dataset and so on.  

 

III. Choosing Components - The next step is to rearrange the matrix V and D in decreasing order of eigenvalue; resulting 

in components in order of significance. So the first principal component will have the largest possible variance; the 

second component besides being orthogonal to the first also has the largest possible inertia. Here arises the matter of 

dimension reduction, in that components with lesser significance can be completely ignored. Assuming L eigenvalues 

are retained (since L ≤ min(M,N) there is a drastic dimension reduction), this results in size of matrices D and V being 

L x L and M x L respectively. The error introduced by this reduction in dimensions can be calculated as, 

𝑞 =∑𝐷𝑖

𝐿

𝑖=1

/∑𝐷𝑖

𝑀

𝑖=1

 

 

This error; also known as ‘loss of information’; very much depends on the model and the choice of priors. As 

shown in the Figure 3 below, for the Brugge Model, with N=104 priors and M=300240 dimensions, 70% of the 

information was retained by only 40 parameters (Dombrowsky et al. 2011). But for the model in this study only 50% 

of information was retained with 40 parameters and 70% with 60 parameters, shown on the right. This is one area 

which warrants further research to better understand the relationship between the choice of prior and loss in 

information during dimension reduction. 

 

    

 
Figure 3 Loss of information. On the left is for Brugge and on the right is the curve for the synthetic test model. 

 

The number of parameters to be retained represents a trade-off between reducing the dimensionality and 

minimizing the error introduced by this reduction. As this number increases, the dimensionality of the feature space 

increases. This will result in a significant increase in the number of iteration runs required for the history matched 

model to be arrived at; which will subsequently result in an increase in optimization time. Though it is expected that a 

more refined model will result in a better history match, this is not necessarily the case in practice. 
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IV. Reparameterization - This is the final step in PCA. Once the dimension reduction has been established, the points 

are transformed to a feature space, 

 

𝑌 = 𝑉𝑇𝐵 

 

where Y contains the feature space co-ordinate. 

 

To normalize the data-set the eigenvalues are used as weighting factors; this is known as a change of basis and y can 

be thought of as a co-ordinate vector in the lower dimensional feature space. 

 

𝑌 =
1

√𝐷
𝑉𝑇𝐵 

 

This will give us the original data solely in terms of the vectors retained. By doing this the data is transformed so that 

it is expressed in terms of the patterns between them. 

 

V. Search the feature space – An optimization algorithm for example NeuralNet, Nelder-Mead is now used in this 

reduced feature space to search for best fit of parameters which also adheres to the production data. It is at the 

optimization stage that the fault transmissibility multipliers are added as parameters to be optimized. The PCA 

workflow is applied to the model with 275520 dimensions for dimension reduction to 40 principal components. These 

principal components in addition to the 24 fault transmissibility multipliers (FTM) forms the input to the optimizer 

algorithm, which performs a search of the feature space for possible values of porosity, permeability, net-to-gross and 

FTM. This was done so that more accessibility can be given to the user with the choice of parameters that he would 

want to incorporate. Besides fault transmissibility the size of aquifers and throw of faults could be optimized this way. 

This area merits further investigation. 

 

To map the points from the feature to the model space and hence back to a simulation model which can be simulated 

forward in time, we use the transform, 

 

𝑥 = √𝐷𝑉𝑦 + 𝜇 
 

where y is a point in feature space and x is a point in model space. 

 

 

Through this process the goal of extracting the important information from the data set and then compressing the size 

of the data set by keeping only the important information is achieved. One important feature of PCA analysis is the method 

used in generating the priors. Modelling of property values throughout the grid cells is done by Sequential Gaussian simulation, 

which is a stochastic method of interpolation based on Kriging. During simulation (here we mean geostatistics simulation not 

flow simulation), local highs and lows will be generated between input data locations (between cells with well log values). 

Each of the nodes will be visited in random order. At each node the data will be kriged to determine the variance at that node, 

and then a value will be picked from the input distribution to match the variance at that node. As subsequent cells are visited, 

the previously defined cell values are used in the kriging. As a result of this method, the last cells to be defined are heavily 

constrained by the distribution of the defined cells. Therefore, it is important that cells are visited in truly random order and 

that localized areas of cells are not visited together and that upscaled well logs are used as input data. Also the position of the 

local highs and lows are determined by a random value, it is because of this that a high number of priors are generated to gain a 

better understanding of uncertainty. 

 

PCA provides an efficient algorithm for dimension reduction of variables with multivariate Gaussian distribution. For 

other distributions, such as those of the multi-point geostatistical method, PCA results in models with feature that appear 

smoother than those from the true distribution. This is because PCA generates new models from linear combination of models 

from the original sample. The standard two-point geostatistical approach (Sequential Gaussian Simulation) are used while 

generating priors as they give rise to samples that have Gaussian distribution, allowing PCA to be employed on the model. 

However, these distributions have a limitation as in they cannot model complex features such as fractures and channels (Sarma 

et al. 2008), which are characterized by multipoint geostatistical algorithms, which expresses the joint variability at many more 

than two locations at a time. This limitation can be addressed by using Kernel-PCA which is a non-linear form of PCA. The 

applicability of this non-linear PCA approach is more suited for describing the complex geological features, and thus can be 

investigated further in the future. 
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History Matching 

In the previous sections, the concept of PCA has been explained in the context of reservoir simulation. Linear PCA is explained 

and employed on the model for dimension reduction, defining a mapping to and from a low-dimensional feature space. It is 

easy to generate new points in this feature space which give rise to models in or near the region of interest and are consistent 

with the geological constraints. The test model was used to demonstrate how a problem with 100 prior models and more than 

250,000 variables can be reduced to only 40 parameters without significant loss of information. In this section the history 

matching of the model is discussed. This involves an automated search of the feature space. It has been mentioned that the 

feature space is continuous, which means that gradient based optimization methods can be employed (even if prior models are 

non-continuous) (Sarma et al. 2006). Amoeba and NeuralNet which are gradient-free algorithms were used in this study 

(Bailey and Couët 2005). 

 

The 40 coefficients of the feature space vector and the 24 FTM are the control parameters that are altered by the 

optimizer. These alterations affect the porosity, permeability, net-to-gross parameters as well as the fault transmissibility 

multiplier of the simulation model. With the reduced dimensions the optimization algorithm is employed in the feature space to 

search for models which are geologically constrained as well as fit the observed dynamic data from the wells. And as such the 

objective function should be able to encapsulate these features. The objective function used in the optimization is the difference 

between simulated and observed data (in a root mean square sense), which can be interpreted as proportional to the log of the 

likelihood probability density function of the model parameters. It has the form, 

 

𝑜𝑏𝑗 = √
1

𝑛
∑(

𝑠𝑖𝑚𝑖 − 𝑜𝑏𝑠𝑖
𝜎𝑖

)2
𝑛

𝑖=1

 

 

where obsi denotes the observed rate or pressure of a well at a given time and simi denotes the equivalent simulation result 

(these are functionally dependent on the input configuration y). By minimizing the objective function, we find the set of model 

parameters such that the discrepancy between observations and simulated results is minimal. This constitutes the maximum-

likelihood (MLE) solution for the model parameters. The observed data consists of Bottom Hole Pressure for 62 wells as well 

as oil and water production rate for 56 wells, observed for a 25 year period on a roughly monthly basis (n=61944). The values 

of 𝜎𝑖 were set as constant for each measurement, with the constant chosen to normalize the measurements to have the same 

range of values. 

 

Amoeba (Nelder-Mead) works on the concept of simplex, which is a special polytope of N+1 vertices in N 

dimensions. So in this case, the polytope is of 64 vertices (40 Principal Components + 24 FTM). Each iteration generates a new 

vertex for the simplex. The algorithm then chooses to replace one of these vertices with the new vertex; these co-ordinates are 

then mapped into the model space, where the resulting simulation model can be run; and so the technique progresses. This way 

the diameter of the simplex gets smaller and the algorithm stops when the optimum value of the objective function has reached. 

This derivative free optimization algorithm was derived from Aurum Optimization Library (Bailey and Couët 2005). Since the 

40 principal components in this case is a representation of the input data in lower dimensionality, it encapsulates the constraints 

to the geological data; this mapping limits the search space to geologically constrained models, while the objective function 

encompasses the observed production behaviour. The optimization is a bottleneck of this process as multiple simulations 

cannot be run in parallel. 

 

The above history matching process can be stated in two broad categories. The first is where the linear PCA is applied 

to identify the subspace spanned by the geologically feasible model; creating a mapping to the feature space which allows to 

discard irrelevant dimensions. The second is the optimization which will search for the model parameters that minimizes the 

differences between the observed and simulated data. 

 

The history matched results for selected wells are shown in Figure 4 (Appendix C). It is evident from the results that 

the algorithm performs robustly. The history match results are able to simulate the observed production behaviour (as evident 

from the low mismatch of the objective function), at the same time the geological realism of the model is maintained. 
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Figure 4 History match for individual wells. On the left is the best history matched well (P302), on the right is the one of the bad 

history matched wells (P301). The green line denotes the history matched results, while the black points denotes the observed well 
data. 

Summary 

In this article, linear PCA has been explained as applied to the history matching process. The algorithm has been successfully 

tested on a synthetic test model with 25 year production history. Since the prior models were generated using Sequential 

Gaussian Simulation (Gaussian distribution of the parameters); linear PCA could be applied to reduce the dimensionality of the 

problem. The analysis took into account uncertain parameters porosity, permeability, net-to-gross and fault transmissibility 

multipliers and generated model with values for these parameters which are consistent with the geological data. The PCA was 

able to reproduce the model in the reduced feature space, but the history match was not perfect. The prime reason for this is the 

objective function in use which was only optimizing BHP and all other mismatches get worse. This was due to the large size of 

the BHP component as compared to others (when the unit conversion takes place for the objective function calculation). In this 

example, the BHP mismatch was of the order X, oil and water rate was of the order Y, which means that improvements in BHP 

dominated the overall objective. This is an artefact of the chosen unit system (SI) and can be rectified by using the Petrel 

internal define objective function (DOF) process. Though this in itself had problems of its own as the internal coding of this 

process is flawed; this is being looked into further. Also the optimization runs have not converged, which means that a 

potentially sub-optimal solution has been found. It might be possible that these runs would have improved given further 

simulation runs. But since the time between the simulation runs were increasing as the iteration number was increasing, there 

was no way of discerning when it would have converged. 

 

PCA is an algorithm that explains a data-set (geostatistical parameters of the simulation model in this case) in a high 

dimensional space reduced to a low-dimensional feature space, this makes it feasible for automated optimization algorithms to 

be used in the new model parameterization. The linear mapping from model to feature space limits the search space to 

geologically reasonable models and together with the objective functions result in models which satisfy both the observed 

behaviour of the field as well as the geological data. This makes it possible to generate more reliable forecasts of future 
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production. Since model updating is an essential feature of “real-time” reservoir management, this study has shown that PCA 

approach has the potential to be able to fulfil this role. 

 

But this requires further investigation, especially the extension of linear-PCA to Kernel-PCA. Since linear-PCA works 

on linear mapping for model reduction, it can only be applicable to parameters which have Gaussian distribution (achieved by 

Sequential Gaussian Simulation, Kriging). Non-Gaussian distribution which are used to model complex features like channels 

can be used with linear-PCA, but this will result in features being smoothed out. This is where Kernel-PCA can be employed 

since it works on the non-linear mapping into the feature space. However, the efficiency and robustness of Kernel-PCA need to 

be investigated first.  

 

 
Figure 5 Methodology employed in PCA for history matching. 

 

Conclusions & Recommendations 

The history matching of the model with the updated algorithm was successfully done. It is evident from the results that the 

PCA algorithm performs robustly. Furthermore, the geological formations form statistically independent subsets of parameters, 

so the geological realism is preserved. However, conducting a history match does not, in itself, provide any real indication 

about the predictive quality of the model; it only minimizes the difference between the observed and the simulated data. 

Several bottlenecks have been encountered in the study which needs to be understood in more detail. The recommendations for 

further research based on the study are summarized below: 

 

1. The relationship between the choice of prior and loss in information during dimension reduction needs to be 

investigated in more detail.  

2. The uncertainty estimation of the history matched model has to be looked. As this will directly tie in with the forecast 

estimation, the uncertainty needs to be addressed and explored. 

3. Forecast optimization, as to how accurate the prediction from the history matched model are, need to be addressed. 

4. The optimization algorithm run needs to be more efficient and robust. Since the time only permitted for the testing of 

two algorithms (Nelder-Mead and NeuralNet); more algorithms can be tried and tested. The framework for these also 

needs to be updated based on the time results from this study (this is being already undertaken at Schlumberger USA). 

5. An extension of Linear-PCA; Kernel PCA can be studied in more detail with focus on how to tie up with linear-PCA. 

6. Advanced PCA methods like using PCA in conjunction with Ensemble Kalman filter can be explored as this will 

address the problem posed by non-Gaussian distributions. 

7. More parameters like fault throw; size of aquifer can be incorporated into the analysis and applied to test models.  
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Nomenclature 
 

M  No. of dimensions (55104 * 5 = 277520) 

N  No. of Priors (100) 

X  M * N Matrix of the data set (Geostatistical Parameters) 

𝝁  M * 1 Matrix of means 
B  M * N Matrix of the mean adjusted data set 

C  M * M Covariance Matrix  

λi, D  Eigenvalue; Diagonal Matrix of Eigenvalues 

vi, V  Eigenvector; Matrix with each column representing 1 eigenvector 

Y  L * N Matrix of the points in the reduced dimension (feature space) 

Ø  Porosity 

kx, ky, kz  Permeability 
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APPENDIX A 

 

Critical Literature Review 

 

 
Table 2 Milestones in History Matching using PCA 

Paper No. Year Title Authors Contribution 

SPE 119094 2010 Results of the Brugge 

Benchmark Study for 

Flooding Optimization and 

History Matching 

E.Peters, R.J.Arts, 

G.K.Brouwer, 

C.R.Geel, 

S.Cullick, 

R.J.Lorentzen, 

Y.Chen, 

K.N.B.Dunlop, 

F.C.Vossepoel, 

R.Xu, P.Sarma, 

A.H.Alhutali, 

A.C. Reynolds 

Published results of all 

competing companies with 

their respective history 

matching methods. 

SPE 106176 2007 A New Approach to 

Automatic History 

Matching Using Kernel 

PCA 

Pallav Sarma, 

Louis J. 

Durlofsky, Khalid 

Aziz, Wen H. 

Chen 

First to apply Kernal PCA 

to history matching with 

results that were superior 

where data was scarce. 

Paper submitted 

for publication 

2011 Geologically constrained 

History Matching with 

PCA 

Thomas P 

Dombrowsky, 

Michael D Prange, 

William J Bailey 

Introduced the concept of 

Linear-PCA, its 

application to Brugge with 

NPV that was highest 

compared to SPE 119094. 

Computational 

Geoscience 

10:3-36 

2006 Efficient real-time 

reservoir management 

using adjoint based 

optimal control and model 

updating 

Pallav Sarma, 

Louis J. 

Durlofsky, Khalid 

Aziz, Wen H. 

Chen 

PCA approach applied to 

dynamic waterflooding 

resulting in increase in 

NPV & sweep efficiency. 

Math Geosci 

40:3-32 

2008 Kernel PCA for Efficient, 

Differentiable 

Parameterization of 

Multipoint Geostatistics 

Pallav Sarma, 

Louis J. 

Durlofsky, Khalid 

Aziz 

First to use higher order 

Kernel PCA. 
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SPE 119094 (2010) 

 

Results of the Brugge Benchmark Study for Flooding Optimization and History Matching 

 

Author: L. Peters; R.J. Arts; G.K. Brouwer and C.R. Geel; S. Cullick; R.J. Lorentzen; Y. Chen; K.N.B. 

Dunlop, Roxar; F.C. Vossepoel; R. Xu; P. Sarma; A.H. Alhuthali; and A.C. Reynolds 

 

Contribution to the understanding of history matching: 

Summarized all the available mathematical tools for the history matching process with a comparison 

against the truth model. 

 

Objective of the paper: 

To summarize the results of the benchmark project to test different mathematical tools employed by the 

participating companies to the history matching process and optimal waterflooding strategy. 

 

Methodology used:  

The results of the history matched models of participants, with a 20 year forecast optimization were 

compared with the truth case (TNO results). 

 

Conclusion reached: 

1. By estimating the petrophysical properties, ensemble-based methods (Ensemble Kalman Filter and 

Ensemble randomized maximum likelihood) resulted in reliable history matched models. 

2. The results also showed that NPV achieved with the flooding strategy that was updated after 

additional production data became available was consistently higher than before the data became 

available. 

3. Increase in NPV by having three control intervals per well instead of one was considerable. 

 

Comments: 

The paper presented a concise overview of the methodology employed for history matching. Since the 

model on which this was done was same for all participants, the results could be compared against the 

TNO. 
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SPE 106176 (2007) 

 

A new approach to Automatic History Matching Using Kernel PCA 

 

Author: Pallav Sarma; Louis J. Durlofsky; Khalid Aziz; Wen H. Chen 

 

Contribution to the understanding of history matching: 

This paper presented a detailed description of the Kernel-PCA approach to the history matching process; 

and this methodology applied to synthetic models. 

 

Objective of the paper: 

To apply Kernel-PCA parameterization to model permeability fields characterized by the multipoint 

geostatistics; for the history matching of models. 

 

Methodology used:  

A non-linear mapping from model space (R) to feature space (F) results in linear realizations in F; and 

thus PCA can be applied on this space. 

 

Conclusion reached: 

1. Linear PCA may be adequate in cases where there is a large amount of data; higher order kernels 

give better representation of geology where data is scarce. 

2. Kernel PCA approach successfully applied to the history matching of synthetic fields with 

permeability as the uncertain parameter. 

 

Comments: 

The paper presented an extension of linear PCA for the history matching process by changing 

permeability characterized by the multipoint geostatistics. Though its applicability to other parameters 

porosity, net-to-gross, FTM and aquifer size were not considered in this case, this methodology can be 

expanded to incorporate these as uncertain parameters. 
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Paper submitted for publication (2011) 

 

Geologically constrained History Matching with Principal Component Analysis 

 

Author: Thomas P. Dombrowsky; Michael D. Prange; William J. Bailey 

 

Contribution to the understanding of history matching: 

PCA approach applied to the Brugge Model with Permeability, porosity and net-to-gross as the uncertain 

parameters. 

 

Objective of the paper: 

To test the applicability of the PCA approach to geologically constrain the model to simulate the observed 

dynamic behaviour, thus resulting in a reliable history matched model. 

 

Methodology used:  

PCA methodology employed to reduce the dimensionality of the model, on which optimization algorithm 

can be run, which optimizes the objective function until it gives local minima. 

 

Conclusion reached: 

1. The history matched model from this analysis outperformed all other methodology employed in 

the challenge as indicated by small discrepancy between predicted and achieved non-optimized 20 

year forecast NPV. 

2. Also the optimized 20 year production forecast strategy created with this PCA history match 

achieves the highest of all published overall NPV. 

 

Comments: 

The paper presents the basis of PCA as employed to the history matching process on which our work is 

based. The main methodology employed here is taken and expanded to include more parameters and the 

updated workflow has been tested on the synthetic model. 
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Math Geosci (2008) 40: 3 - 32 

 

Kernel Principal Component Analysis for Efficient, Differentiable Parameterization of Multipoint 

Geostatistics 

 

Author: Pallav Sarma; Louis J. Durlofsky; Khalid Aziz 

 

Contribution to the understanding of history matching: 

This paper presented a detailed description of the Kernel-PCA approach to the history matching process; 

and this methodology applied to synthetic models. 

 

Objective of the paper: 

To apply a novel approach to create a differentiable parameterization of large scale non-Gaussian random 

fields that is capable of reproducing complex geological structures like channels. 

 

Methodology used:  

It expands on the methodology of PCA by working out a Kernel matrix which is able to parameterize 

distributions non-Gaussian in nature. A non-linear mapping from model space (R) to feature space (F) 

results in linear realizations in F; and thus PCA can be applied on this space. 

 

Conclusion reached: 

The methodology employed is able to overcome the two major problems of linear-PCA 

1. Using high order polynomial Kernels, multipoint geostatistics are preserved thereby recreating 

complex geological features. 

2. Furthermore, the approach requires eigen-decomposition of a small kernel matrix instead of a 

covariance matrix. 

 

Comments: 

The paper presented an extension of linear PCA for the history matching process by changing 

permeability characterized by the multipoint geostatistics. Though its applicability to other parameters 

porosity, net-to-gross, FTM and aquifer size were not considered in this case, this methodology can be 

expanded to incorporate these as uncertain parameters. 
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Computational Geosciences (2006) 10:3 - 36 

 

Efficient real-time reservoir management using adjoin-based optimal control and model updating 

 

Author: Pallav Sarma; Louis J. Durlofsky; Khalid Aziz; Wen H. Chen 

 

Contribution to the understanding of history matching: 

Karhunen-Loeve expansion used in combination with Bayesian inversion theory for efficient history 

matching, which is one cog of the closed-loop approach employed in this study to provide a  substantial 

improvement in NPV. 

 

Objective of the paper: 

To implement real time reservoir management that combines efficient optimal control and model updating 

algorithms on synthetic models. 

 

Methodology used:  

Use of adjoint models to choose new search directions and control strategy; then K-L expansion 

employed for history matching and control strategy employed to this model to predict future performance. 

 

Conclusion reached: 

1. Efficient parameterization of permeability in term of K-L expansion, in combination with 

Bayesian inversion and adjoint models, provides a history matched model under geological 

constraints. 

2. Since adjoint models were used for both optimization and model updating, many components of 

the code can be reused, resulting in added efficiency. 

 

Comments: 

The paper successfully implemented the closed loop approach which has significant future utilization. 

Since history matching is an essential feature of this approach, significant improvements are needed to 

bring this to fruition. One such approach has been discussed here with just permeability as the uncertain 

parameter. 
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APPENDIX B 

 

Prior Model Creation 

 

In the Petrel workflow the Uncertainty and Optimization tool allows to create multiple realizations of a 

model with different values for uncertain parameters. Here, the petrophysical modeling tool, constrains 

uncertain parameters resulting in models that differ in geological (i.e. rock) properties only. During every 

iteration, a new prior is created with a unique set of rock properties. The algorithm used for generating 

these values was Sequential Gaussian Simulation which honors well data, input distributions, 

variograms, and trends. The variogram and distribution are used to create local variations, in rock 

properties away from input data. As a stochastic simulation, the result is dependent on the input of a 

random seed. The Figure 6 below shows the tool window used in Petrel workflow. The seed number 

defines a random number used in simulation, each time the workflow is run a new random seed is chosen 

which generates a new realization. The major and minor direction ranges define the influence of the well 

logs away from the cells where these logs intersect. The vertical influence range defines the vertical 

continuity; larger the range thicker the beds will be. 

 

Figure 6 Petrophysical Modelling Process 
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Here the $variables (seed, major and minor) are used as the control parameter for a unique value to be 

generated for the rock properties resulting in 1 realization. The workflow shown in Figure 7 is utilized in 

Petrel to create these realizations. The Monte-Carlo sampler is used in this workflow; it is a stochastic 

sampling algorithm which samples the uncertain variables randomly from their assigned distributions. 

The Latin-hypercube sampling is used as an add-on to it; this option ensures that the sampled values for 

each parameter are distributed over the entire range of that parameter. 

 

 
Figure 7 Workflow in Petrel to create prior. 
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APPENDIX C 

 

History Matched Results 
 

 

 
Figure 8 Aerial view of the porosity distribution; on the left is one of the prior model and on the right is the history matched model. 

 

 
Figure 9 Aerial view of the permeability (in k direction) distribution; on the left is one of the prior model and on the right is the 

history matched model. 
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Figure 10 Match for the field oil production rate. Black points denotes the observed data, green line is the simulated result. 

 
Figure 11 Match for Water Production Rate. Black points denotes the observed data, green line is the simulated result. 



History Matching Using PCA   21 

 
Figure 12 Match for field oil production total. Black points denotes the observed data, green line is the simulated result. 

 

 
Figure 13 Match for field water production total. Black points denotes the observed data, green line is the simulated result. 


