6 research outputs found

    The Sample Complexity of Search over Multiple Populations

    Full text link
    This paper studies the sample complexity of searching over multiple populations. We consider a large number of populations, each corresponding to either distribution P0 or P1. The goal of the search problem studied here is to find one population corresponding to distribution P1 with as few samples as possible. The main contribution is to quantify the number of samples needed to correctly find one such population. We consider two general approaches: non-adaptive sampling methods, which sample each population a predetermined number of times until a population following P1 is found, and adaptive sampling methods, which employ sequential sampling schemes for each population. We first derive a lower bound on the number of samples required by any sampling scheme. We then consider an adaptive procedure consisting of a series of sequential probability ratio tests, and show it comes within a constant factor of the lower bound. We give explicit expressions for this constant when samples of the populations follow Gaussian and Bernoulli distributions. An alternative adaptive scheme is discussed which does not require full knowledge of P1, and comes within a constant factor of the optimal scheme. For comparison, a lower bound on the sampling requirements of any non-adaptive scheme is presented.Comment: To appear, IEEE Transactions on Information Theor

    A Linear Programming Approach to Sequential Hypothesis Testing

    Full text link
    Under some mild Markov assumptions it is shown that the problem of designing optimal sequential tests for two simple hypotheses can be formulated as a linear program. The result is derived by investigating the Lagrangian dual of the sequential testing problem, which is an unconstrained optimal stopping problem, depending on two unknown Lagrangian multipliers. It is shown that the derivative of the optimal cost function with respect to these multipliers coincides with the error probabilities of the corresponding sequential test. This property is used to formulate an optimization problem that is jointly linear in the cost function and the Lagrangian multipliers and an be solved for both with off-the-shelf algorithms. To illustrate the procedure, optimal sequential tests for Gaussian random sequences with different dependency structures are derived, including the Gaussian AR(1) process.Comment: 25 pages, 4 figures, accepted for publication in Sequential Analysi

    Asymptotic Optimality Theory For Decentralized Sequential Multihypothesis Testing Problems

    Full text link
    The Bayesian formulation of sequentially testing M3M \ge 3 hypotheses is studied in the context of a decentralized sensor network system. In such a system, local sensors observe raw observations and send quantized sensor messages to a fusion center which makes a final decision when stopping taking observations. Asymptotically optimal decentralized sequential tests are developed from a class of "two-stage" tests that allows the sensor network system to make a preliminary decision in the first stage and then optimize each local sensor quantizer accordingly in the second stage. It is shown that the optimal local quantizer at each local sensor in the second stage can be defined as a maximin quantizer which turns out to be a randomization of at most M1M-1 unambiguous likelihood quantizers (ULQ). We first present in detail our results for the system with a single sensor and binary sensor messages, and then extend to more general cases involving any finite alphabet sensor messages, multiple sensors, or composite hypotheses.Comment: 14 pages, 1 figure, submitted to IEEE Trans. Inf. Theor

    Quick Search for Rare Events

    Full text link
    Rare events can potentially occur in many applications. When manifested as opportunities to be exploited, risks to be ameliorated, or certain features to be extracted, such events become of paramount significance. Due to their sporadic nature, the information-bearing signals associated with rare events often lie in a large set of irrelevant signals and are not easily accessible. This paper provides a statistical framework for detecting such events so that an optimal balance between detection reliability and agility, as two opposing performance measures, is established. The core component of this framework is a sampling procedure that adaptively and quickly focuses the information-gathering resources on the segments of the dataset that bear the information pertinent to the rare events. Particular focus is placed on Gaussian signals with the aim of detecting signals with rare mean and variance values

    Optimal sensor scheduling for multiple hypothesis testing

    Get PDF
    Bibliography: p. 72-73."September 1981""ONR-N00014-77-0532"Robert R. Tenney

    A Unified Multi-Functional Dynamic Spectrum Access Framework: Tutorial, Theory and Multi-GHz Wideband Testbed

    Get PDF
    Dynamic spectrum access is a must-have ingredient for future sensors that are ideally cognitive. The goal of this paper is a tutorial treatment of wideband cognitive radio and radar—a convergence of (1) algorithms survey, (2) hardware platforms survey, (3) challenges for multi-function (radar/communications) multi-GHz front end, (4) compressed sensing for multi-GHz waveforms—revolutionary A/D, (5) machine learning for cognitive radio/radar, (6) quickest detection, and (7) overlay/underlay cognitive radio waveforms. One focus of this paper is to address the multi-GHz front end, which is the challenge for the next-generation cognitive sensors. The unifying theme of this paper is to spell out the convergence for cognitive radio, radar, and anti-jamming. Moore’s law drives the system functions into digital parts. From a system viewpoint, this paper gives the first comprehensive treatment for the functions and the challenges of this multi-function (wideband) system. This paper brings together the inter-disciplinary knowledge
    corecore