2 research outputs found

    Detection of shockable heart rhythms with convolutional neural networks : Based on ECG spectrograms

    Get PDF
    Purpose Automated feature extraction combined with deep learning has had and continues to have a strong impact on the improvement and implementation of pattern recognition driven by machine learning. Systems without prior expertise about a problem but with the ability to iteratively learn strategies to solve problems, tend to outperform concepts of manual feature engineering in vari-ous fields. In ECG data analysis as well as in other medical domains, models based on manual feature extraction are tedious to develop, require scientific expertise, and are oftentimes not easily adaptive to variations of the problem to be solved. This work aims to examine automated feature extraction and classification of ECG data, specifically of shockable heart rhythms, with convolu-tional neural networks and residual neural networks. The precise and rapid determination of shockable cardiac conditions is a decisive step to improve the chances of survival for patients having a sudden cardiac arrest. Conventional, commercially available automated external defib-rillators (AEDs) deploy algorithms based on manual feature extraction. Approximately 1 out of 10 shockable conditions is not recognized by the AED. Consequently, strategies for improvement need to be explored. Methods 125 ECG recordings from four annotated cardiac arrhythmia databases (American Heart Association Database, Creighton University Tachyarrhythmia Database, MIT-BIH Arrhythmia Da-tabase, MIT-BIH Malignant Ventricular Arrhythmia Database) with a duration of 30 mins or 8 mins (Creighton University Tachyarrhythmia Database) per recording were processed. Shockable con-ditions are identified as ventricular tachycardia, ventricular fibrillation, and ventricular flutter. The 1 channel ECG recordings (modified limb lead II) were normalized to 250 Hz sampling frequency, high-pass filtered (1 Hz cutoff and 0.85 filter steepness), second order Butterworth low-pass fil-tered (30 Hz cutoff), and notch filtered at 50 Hz. Consistent wavelet transformation with 5 octaves, 20 voices per octave, and a time bandwidth product parameter of 50 was applied to generate greyscale spectrogram representations of the ECG data (pixel value range from 0 to 255). The recordings were segmented into 3 s segments. Data augmentation around the borders of shock-able episodes and along shockable episodes was carried out to create balanced datasets con-sisting of 60340 samples. 45% of samples in the balanced dataset contain shockable rhythms with more than 60% temporal prevalence within each sample. Conventional convolutional neural networks and residual neural networks with varying architectures and hyperparameter settings were trained and evaluated on balanced datasets (train/val/test: 70/15/15). The approach focused on examining a broader range of parameter settings and model architectures rather than optimiz-ing a specific configuration. The best performing model was evaluated in a 5-fold cross-validation. Exemplarily, a leave-one-subject-out cross-validation was deployed with 3 randomly chosen re-cordings, with the constraints that each subject must come from a different database and contain a different shockable condition. Results and Conclusion The best performing model was a residual neural network with 96 residual blocks. The 5-fold cross-validation results on average in an accuracy of 0.987, a sensitivity of 0.992 on shock-able rhythms, and a specificity of 0.984 for non-shockable rhythms on the test sets. The ROC AUC score is 0.998 on average. The 3-fold leave-one-subject-out cross-validation reaches on average an accuracy of 0.984, a sensitivity of 0.984, and a specificity of 0.980. The ROC AUC score reaches 0.997 on average. The analysis of misclassified segments reveals that the classi-fier performs less accurately on border segments containing a shockable and at least one non-shockable rhythm. While the test set contains 4.73% border segments, the set of misclassified samples includes 11.29% border segments. The label distributions of the test set and the set of misclassified samples show that segments annotated as “not defined” (ND) and “ventricular fibril-lation or flutter” (VF-VFL) are significantly more prevalent in the set of misclassified samples. Histogram analysis, referring to the mean pixel intensity of the spectrograms, indicates that the classifier works less accurately on spectrograms with mean pixel values below 2 (practically flat-line signals or signals with very small amplitude). The results indicate that it is possible to improve the analysis of ECG data by deploying automated feature detection combined with artificial neural networks. The methods presented in this work are not restricted to the detection of shockable cardiac arrhythmias, they likewise em-phasize the potential of machine learning in the domain of biosignal analysis and correlated med-ical data. In the next step, the approach needs to be verified on a broader database. The tech-nology can even help create more comprehensive databases of clinical ECG data by supporting automated annotation

    Sequential algorithm for the detection of the shockable rhythms in electrocardiogram

    No full text
    corecore