7 research outputs found

    Sequential Relational Decomposition

    Get PDF
    The concept of decomposition in computer science and engineering is considered a fundamental component of computational thinking and is prevalent in design of algorithms, software construction, hardware design, and more. We propose a simple and natural formalization of sequential decomposition, in which a task is decomposed into two sequential sub-tasks, with the first sub-task to be executed before the second sub-task is executed. These tasks are specified by means of input/output relations. We define and study decomposition problems, which is to decide whether a given specification can be sequentially decomposed. Our main result is that decomposition itself is a difficult computational problem. More specifically, we study decomposition problems in three settings: where the input task is specified explicitly, by means of Boolean circuits, and by means of automatic relations. We show that in the first setting decomposition is NP-complete, in the second setting it is NEXPTIME-complete, and in the third setting there is evidence to suggest that it is undecidable. Our results indicate that the intuitive idea of decomposition as a system-design approach requires further investigation. In particular, we show that adding a human to the loop by asking for a decomposition hint lowers the complexity of decomposition problems considerably

    Sequential Relational Decomposition

    Get PDF
    The concept of decomposition in computer science and engineering is considered a fundamental component of computational thinking and is prevalent in design of algorithms, software construction, hardware design, and more. We propose a simple and natural formalization of sequential decomposition, in which a task is decomposed into two sequential sub-tasks, with the first sub-task to be executed before the second sub-task is executed. These tasks are specified by means of input/output relations. We define and study decomposition problems, which is to decide whether a given specification can be sequentially decomposed. Our main result is that decomposition itself is a difficult computational problem. More specifically, we study decomposition problems in three settings: where the input task is specified explicitly, by means of Boolean circuits, and by means of automatic relations. We show that in the first setting decomposition is NP-complete, in the second setting it is NEXPTIME-complete, and in the third setting there is evidence to suggest that it is undecidable. Our results indicate that the intuitive idea of decomposition as a system-design approach requires further investigation. In particular, we show that adding a human to the loop by asking for a decomposition hint lowers the complexity of decomposition problems considerably

    PELATIHAN COMPUTATIONAL THINKING DALAM GERAKAN PANDAI PENGAJAR ERA DIGITAL INDONESIA PADA GURU SMPN 1 MUNCAR

    Get PDF
    Berpikir komputasional atau Computational Thinking adalah metode menyelesaikan persoalan dengan menerapkan teknik ilmu komputer (informatika). Tantangan bebras menyajikan soal-soal yang mendorong siswa untuk berpikir kreatif dan kritis dalam menyelesaikan persoalan dengan menerapkan konsep-konsep berpikir komputasional. SMPN 1 Muncar merupakan salah satu sekolah menengah pertama di Banyuwangi yang berupaya ingin meningkatkan kemampuan sumberdaya manusia dengan cara berfikir secara komputer. Adanya bebras chalange yang diselenggarakan setiap tahunnya membuat guru SMPN 1 muncar ingin terus bersaing di kancah nasional maupun internasional. Namun dengan adanya keterbatasan penyampaian terhadap siswa maupun guru mengenai cara berfikir komputasi, membuat pelatihan ini dirasa perlu untuk dilakukan. Dengan adanya pelatihan cara berfikir secara komputasi diharapkan Guru SMPN 1 Muncar akan lebih cakap dalam membuat soal bebras maupun memberikan pemahaman yang baik terhadap siswa didiknya

    Sequential relational decomposition

    No full text
    The concept of decomposition in computer science and engineering is considered a fundamental component of computational thinking and is prevalent in design of algorithms, software construction, hardware design, and more. We propose a simple and natural formalization of sequential decomposition, in which a task is decomposed into two sequential sub-tasks, with the first sub-task to be executed out before the second sub-task is executed. These tasks are specified by means of input/output relations. We define and study decomposition problems, which is to decide whether a given specification can be sequentially decomposed. Our main result is that decomposition itself is a difficult computational problem. More specifically, we study decomposition problems in three settings: where the input task is specified explicitly, by means of Boolean circuits, and by means of automatic relations. We show that in the first setting decomposition is NP-complete, in the second setting it is NEXPTIME-complete, and in the third setting there is evidence to suggest that it is undecidable. Our results indicate that the intuitive idea of decomposition as a system-design approach requires further investigation. In particular, we show that adding human to the loop by asking for a decomposition hint lowers the complexity of decomposition problems considerably

    Sequential Relational Decomposition

    No full text
    The concept of decomposition in computer science and engineering is considered a fundamental component of computational thinking and is prevalent in design of algorithms, software construction, hardware design, and more. We propose a simple and natural formalization of sequential decomposition, in which a task is decomposed into two sequential sub-tasks, with the first sub-task to be executed out before the second sub-task is executed. These tasks are specified by means of input/output relations. We define and study decomposition problems, which is to decide whether a given specification can be sequentially decomposed. Our main result is that decomposition itself is a difficult computational problem. More specifically, we study decomposition problems in three settings: where the input task is specified explicitly, by means of Boolean circuits, and by means of automatic relations. We show that in the first setting decomposition is NP-complete, in the second setting it is NEXPTIME-complete, and in the third setting there is evidence to suggest that it is undecidable. Our results indicate that the intuitive idea of decomposition as a system-design approach requires further investigation. In particular, we show that adding human to the loop by asking for a decomposition hint lowers the complexity of decomposition problems considerably

    Sequential Relational Decomposition

    No full text
    The concept of decomposition in computer science and engineering is considered a fundamental component of computational thinking and is prevalent in design of algorithms, software construction, hardware design, and more. We propose a simple and natural formalization of sequential decomposition, in which a task is decomposed into two sequential sub-tasks, with the first sub-task to be executed out before the second sub-task is executed. These tasks are specified by means of input/output relations. We define and study decomposition problems, which is to decide whether a given specification can be sequentially decomposed. Our main result is that decomposition itself is a difficult computational problem. More specifically, we study decomposition problems in three settings: where the input task is specified explicitly, by means of Boolean circuits, and by means of automatic relations. We show that in the first setting decomposition is NP-complete, in the second setting it is NEXPTIME-complete, and in the third setting there is evidence to suggest that it is undecidable. Our results indicate that the intuitive idea of decomposition as a system-design approach requires further investigation. In particular, we show that adding human to the loop by asking for a decomposition hint lowers the complexity of decomposition problems considerably
    corecore