1,529 research outputs found

    Sequential Recommendation with Self-Attentive Multi-Adversarial Network

    Full text link
    Recently, deep learning has made significant progress in the task of sequential recommendation. Existing neural sequential recommenders typically adopt a generative way trained with Maximum Likelihood Estimation (MLE). When context information (called factor) is involved, it is difficult to analyze when and how each individual factor would affect the final recommendation performance. For this purpose, we take a new perspective and introduce adversarial learning to sequential recommendation. In this paper, we present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation. Specifically, our proposed MFGAN has two kinds of modules: a Transformer-based generator taking user behavior sequences as input to recommend the possible next items, and multiple factor-specific discriminators to evaluate the generated sub-sequence from the perspectives of different factors. To learn the parameters, we adopt the classic policy gradient method, and utilize the reward signal of discriminators for guiding the learning of the generator. Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time. Extensive experiments conducted on three real-world datasets demonstrate the superiority of our proposed model over the state-of-the-art methods, in terms of effectiveness and interpretability

    Quaternion-Based Self-Attentive Long Short-Term User Preference Encoding for Recommendation

    Full text link
    Quaternion space has brought several benefits over the traditional Euclidean space: Quaternions (i) consist of a real and three imaginary components, encouraging richer representations; (ii) utilize Hamilton product which better encodes the inter-latent interactions across multiple Quaternion components; and (iii) result in a model with smaller degrees of freedom and less prone to overfitting. Unfortunately, most of the current recommender systems rely on real-valued representations in Euclidean space to model either user's long-term or short-term interests. In this paper, we fully utilize Quaternion space to model both user's long-term and short-term preferences. We first propose a QUaternion-based self-Attentive Long term user Encoding (QUALE) to study the user's long-term intents. Then, we propose a QUaternion-based self-Attentive Short term user Encoding (QUASE) to learn the user's short-term interests. To enhance our models' capability, we propose to fuse QUALE and QUASE into one model, namely QUALSE, by using a Quaternion-based gating mechanism. We further develop Quaternion-based Adversarial learning along with the Bayesian Personalized Ranking (QABPR) to improve our model's robustness. Extensive experiments on six real-world datasets show that our fused QUALSE model outperformed 11 state-of-the-art baselines, improving 8.43% at HIT@1 and 10.27% at NDCG@1 on average compared with the best baseline

    Defending Substitution-Based Profile Pollution Attacks on Sequential Recommenders

    Full text link
    While sequential recommender systems achieve significant improvements on capturing user dynamics, we argue that sequential recommenders are vulnerable against substitution-based profile pollution attacks. To demonstrate our hypothesis, we propose a substitution-based adversarial attack algorithm, which modifies the input sequence by selecting certain vulnerable elements and substituting them with adversarial items. In both untargeted and targeted attack scenarios, we observe significant performance deterioration using the proposed profile pollution algorithm. Motivated by such observations, we design an efficient adversarial defense method called Dirichlet neighborhood sampling. Specifically, we sample item embeddings from a convex hull constructed by multi-hop neighbors to replace the original items in input sequences. During sampling, a Dirichlet distribution is used to approximate the probability distribution in the neighborhood such that the recommender learns to combat local perturbations. Additionally, we design an adversarial training method tailored for sequential recommender systems. In particular, we represent selected items with one-hot encodings and perform gradient ascent on the encodings to search for the worst case linear combination of item embeddings in training. As such, the embedding function learns robust item representations and the trained recommender is resistant to test-time adversarial examples. Extensive experiments show the effectiveness of both our attack and defense methods, which consistently outperform baselines by a significant margin across model architectures and datasets.Comment: Accepted to RecSys 202

    Learning transferrable parameters for long-tailed sequential user behavior modeling

    Get PDF
    National Research Foundation (NRF) Singapore under its AI Singapore Programm

    DiffuRec: A Diffusion Model for Sequential Recommendation

    Full text link
    Mainstream solutions to Sequential Recommendation (SR) represent items with fixed vectors. These vectors have limited capability in capturing items' latent aspects and users' diverse preferences. As a new generative paradigm, Diffusion models have achieved excellent performance in areas like computer vision and natural language processing. To our understanding, its unique merit in representation generation well fits the problem setting of sequential recommendation. In this paper, we make the very first attempt to adapt Diffusion model to SR and propose DiffuRec, for item representation construction and uncertainty injection. Rather than modeling item representations as fixed vectors, we represent them as distributions in DiffuRec, which reflect user's multiple interests and item's various aspects adaptively. In diffusion phase, DiffuRec corrupts the target item embedding into a Gaussian distribution via noise adding, which is further applied for sequential item distribution representation generation and uncertainty injection. Afterwards, the item representation is fed into an Approximator for target item representation reconstruction. In reversion phase, based on user's historical interaction behaviors, we reverse a Gaussian noise into the target item representation, then apply rounding operation for target item prediction. Experiments over four datasets show that DiffuRec outperforms strong baselines by a large margin

    NAIS: Neural Attentive Item Similarity Model for Recommendation

    Full text link
    Item-to-item collaborative filtering (aka. item-based CF) has been long used for building recommender systems in industrial settings, owing to its interpretability and efficiency in real-time personalization. It builds a user's profile as her historically interacted items, recommending new items that are similar to the user's profile. As such, the key to an item-based CF method is in the estimation of item similarities. Early approaches use statistical measures such as cosine similarity and Pearson coefficient to estimate item similarities, which are less accurate since they lack tailored optimization for the recommendation task. In recent years, several works attempt to learn item similarities from data, by expressing the similarity as an underlying model and estimating model parameters by optimizing a recommendation-aware objective function. While extensive efforts have been made to use shallow linear models for learning item similarities, there has been relatively less work exploring nonlinear neural network models for item-based CF. In this work, we propose a neural network model named Neural Attentive Item Similarity model (NAIS) for item-based CF. The key to our design of NAIS is an attention network, which is capable of distinguishing which historical items in a user profile are more important for a prediction. Compared to the state-of-the-art item-based CF method Factored Item Similarity Model (FISM), our NAIS has stronger representation power with only a few additional parameters brought by the attention network. Extensive experiments on two public benchmarks demonstrate the effectiveness of NAIS. This work is the first attempt that designs neural network models for item-based CF, opening up new research possibilities for future developments of neural recommender systems
    corecore