While sequential recommender systems achieve significant improvements on
capturing user dynamics, we argue that sequential recommenders are vulnerable
against substitution-based profile pollution attacks. To demonstrate our
hypothesis, we propose a substitution-based adversarial attack algorithm, which
modifies the input sequence by selecting certain vulnerable elements and
substituting them with adversarial items. In both untargeted and targeted
attack scenarios, we observe significant performance deterioration using the
proposed profile pollution algorithm. Motivated by such observations, we design
an efficient adversarial defense method called Dirichlet neighborhood sampling.
Specifically, we sample item embeddings from a convex hull constructed by
multi-hop neighbors to replace the original items in input sequences. During
sampling, a Dirichlet distribution is used to approximate the probability
distribution in the neighborhood such that the recommender learns to combat
local perturbations. Additionally, we design an adversarial training method
tailored for sequential recommender systems. In particular, we represent
selected items with one-hot encodings and perform gradient ascent on the
encodings to search for the worst case linear combination of item embeddings in
training. As such, the embedding function learns robust item representations
and the trained recommender is resistant to test-time adversarial examples.
Extensive experiments show the effectiveness of both our attack and defense
methods, which consistently outperform baselines by a significant margin across
model architectures and datasets.Comment: Accepted to RecSys 202