8,843 research outputs found

    Why is this an anomaly? Explaining anomalies using sequential explanations

    Get PDF
    In most applications, anomaly detection operates in an unsupervised mode by looking for outliers hoping that they are anomalies. Unfortunately, most anomaly detectors do not come with explanations about which features make a detected outlier point anomalous. Therefore, it requires human analysts to manually browse through each detected outlier point’s feature space to obtain the subset of features that will help them determine whether they are genuinely anomalous or not. This paper introduces sequential explanation (SE) methods that sequentially explain to the analyst which features make the detected outlier anomalous. We present two methods for computing SEs called the outlier and sample-based SE that will work alongside any anomaly detector. The outlier-based SE methods use an anomaly detector’s outlier scoring measure guided by a search algorithm to compute the SEs. Meanwhile, the sample-based SE methods employ sampling to turn the problem into a classical feature selection problem. In our experiments, we compare the performances of the different outlier- and sample-based SEs. Our results show that both the outlier and sample-based methods compute SEs that perform well and outperform sequential feature explanations.http://www.elsevier.com/locate/patcoghj2021Computer Scienc

    A Survey on Explainable Anomaly Detection

    Full text link
    In the past two decades, most research on anomaly detection has focused on improving the accuracy of the detection, while largely ignoring the explainability of the corresponding methods and thus leaving the explanation of outcomes to practitioners. As anomaly detection algorithms are increasingly used in safety-critical domains, providing explanations for the high-stakes decisions made in those domains has become an ethical and regulatory requirement. Therefore, this work provides a comprehensive and structured survey on state-of-the-art explainable anomaly detection techniques. We propose a taxonomy based on the main aspects that characterize each explainable anomaly detection technique, aiming to help practitioners and researchers find the explainable anomaly detection method that best suits their needs.Comment: Paper accepted by the ACM Transactions on Knowledge Discovery from Data (TKDD) for publication (preprint version

    Capturing Evolution Genes for Time Series Data

    Full text link
    The modeling of time series is becoming increasingly critical in a wide variety of applications. Overall, data evolves by following different patterns, which are generally caused by different user behaviors. Given a time series, we define the evolution gene to capture the latent user behaviors and to describe how the behaviors lead to the generation of time series. In particular, we propose a uniform framework that recognizes different evolution genes of segments by learning a classifier, and adopt an adversarial generator to implement the evolution gene by estimating the segments' distribution. Experimental results based on a synthetic dataset and five real-world datasets show that our approach can not only achieve a good prediction results (e.g., averagely +10.56% in terms of F1), but is also able to provide explanations of the results.Comment: a preprint version. arXiv admin note: text overlap with arXiv:1703.10155 by other author

    Graph Neural Networks based Log Anomaly Detection and Explanation

    Full text link
    Event logs are widely used to record the status of high-tech systems, making log anomaly detection important for monitoring those systems. Most existing log anomaly detection methods take a log event count matrix or log event sequences as input, exploiting quantitative and/or sequential relationships between log events to detect anomalies. Unfortunately, only considering quantitative or sequential relationships may result in low detection accuracy. To alleviate this problem, we propose a graph-based method for unsupervised log anomaly detection, dubbed Logs2Graphs, which first converts event logs into attributed, directed, and weighted graphs, and then leverages graph neural networks to perform graph-level anomaly detection. Specifically, we introduce One-Class Digraph Inception Convolutional Networks, abbreviated as OCDiGCN, a novel graph neural network model for detecting graph-level anomalies in a collection of attributed, directed, and weighted graphs. By coupling the graph representation and anomaly detection steps, OCDiGCN can learn a representation that is especially suited for anomaly detection, resulting in a high detection accuracy. Importantly, for each identified anomaly, we additionally provide a small subset of nodes that play a crucial role in OCDiGCN's prediction as explanations, which can offer valuable cues for subsequent root cause diagnosis. Experiments on five benchmark datasets show that Logs2Graphs performs at least on par with state-of-the-art log anomaly detection methods on simple datasets while largely outperforming state-of-the-art log anomaly detection methods on complicated datasets.Comment: Preprint submitted to Engineering Applications of Artificial Intelligenc
    • …
    corecore