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Anomaly detection has been used in variety of applications in practice, includ-

ing cyber-security, fraud detection and detecting faults in safety critical systems,

etc. Anomaly detectors produce a ranked list of statistical anomalies, which are

typically examined by human analysts in order to extract the actual anomalies of

interest. Unfortunately, most anomaly detectors provide no explanations about

why an instance was considered anomalous. To address this issue, we propose a

feature based explanation approach called sequential feature explanation (SFE)

to help the analyst in their investigation. A second problem with the anomaly

detection systems is that they usually produce a large number of false positives

due to a mismatch between statistical and semantic anomalies. We address this

issue by incorporating human feedback, that is, we develop a human-in-the-loop

anomaly detection system which can improve its detection rate with a simple form

of true/false positive feedback from the analyst. We show empirically the efficacy

and the superior performance of both of our explanation and feedback approaches

on significant cyber security applications including red team attack data and real

corporate network data along with a large number of benchmark datasets. We also

delve into a set of state-of-the-art anomaly detection techniques to understand why

they perform so well with a small number of training examples. We unify their

working principle into a common framework underlying different pattern spaces

and compute their sample complexity for achieving performance guarantees. In

addition, we empirically investigate learning curves for anomaly detection in this

framework.
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Chapter 1: Introduction

This dissertation focuses on the anomaly detection problem in general with a spe-

cial focus on computer security as an application. The frequency of cyberattacks

is rapidly increasing in all sectors of personal, enterprise, government, and medical

computer systems. While there are many effective tools for detecting and mitigat-

ing known attacks, tools for detecting novel attacks are still unreliable. While fully

automated detection of cyberattacks is a clear goal for the future, a more realistic

and important near-term goal is to develop security systems that interact with a

security analyst in order to detect the attacks as quickly as possible. We address

these issues by employing anomaly detection techniques and develop methodolo-

gies and extensions around anomaly detection. We try to understand why modern

anomaly detection often perform well and what are the practical problems people

face when an anomaly detection system is deployed. We discuss those problems in

detail and developed methodologies to address those problems scientifically.

1.1 Anomaly Detection

The problem of (unsupervised) anomaly detection is to identify anomalies in (un-

labeled) data, where an anomaly is a data point that is generated by a process

that is distinct from the process that generates “normal” points. This prob-

lem arises in a large number of applications, from security to data cleaning, and

there have been many approaches proposed in the literature [Chandola et al., 2009,

Hodge and Austin, 2004]. Figure 1.1 shows a simple one dimensional anomaly de-

tector based on density computation, that is, lower density points are declared as

anomalous.

While most applications seek to identify semantically-interesting anomalies, it

is typically not possible to predefine a functional notion of semantic interesting-

ness. Instead, the vast majority of anomaly detectors use a surrogate measure of

interestingness. For example, a point may be interesting if it is a statistical outlier

or if it is far away from other data points. The performance of a given detector in

a domain depends on how well it can optimize the statistical measure and on how
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Figure 1.1: Density based anomaly detection. The red points are outliers due to
lying in a low density region.

well that measure aligns with the behavior of anomalies in the application domain.

One way to align the statistical measure to the target behavior is via some su-

pervision which can be collected from some end user domain expert. The domain

expert also needs to understand why the anomaly detector surfaces certain points

as anomalous and others as nominal. So, we need to provide some explanations

about why the anomaly detector actually choosing certain points as anomalous.

We address both of these issues in this dissertation by developing methodologies

to produce explanations and how to incorporate analysts feedback into anomaly

detection.

1.2 Outline

Chapter 2 addresses the question of why modern anomaly detection performs well

with a surprisingly small number of examples. Specifically, we develop some theory

around the sample complexity of different anomaly detection techniques underlying

different pattern spaces and provide PAC guarantees. This work resulted in a

conference paper at UAI 2016 [Siddiqui et al., 2016].

Chapter 3 addresses the problem that most anomaly detectors do not provide
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explanations about why they detected certain points as anomalous. Specifically,

we proposes an explanation idea based on the input features and develop some

efficient practical algorithms to produce such explanations. This work resulted an

ODDx3 workshop paper at KDD 2015 [Siddiqui et al., 2015] and a journal paper

at ACM TKDD 2019 [Siddiqui et al., 2019a].

Chapter 4 focuses on how the anomaly detection performance can be improved

from the feedback of an end-user analyst to reduce number of false positives. We

show how such approaches can be applied in a significant cyber security application.

This work resulted an AICS workshop paper at AAAI 2018 [Siddiqui et al., 2018b]

and a conference paper at KDD 2018 [Siddiqui et al., 2018a].

Chapter 5 explores the class discovery problem which focuses on how quickly

we can discover all of the interesting classes from a given dataset, for example,

discovering all of the different types of attack from network data. Finally, Chapter 6

provides some conclusions along with some future directions.
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Chapter 2: Rare Pattern Anomaly Detection (RPAD)

2.1 Introduction

For moderately high-dimensional data, all data points become far apart from

each other, so they are all statistical outliers in a sense. This suggests that

anomaly detection by identifying outliers or distant points should perform poorly

and degrade to random selection as the dimensionality grows. Empirical results,

however, have shown that state-of-the-art anomaly detectors often perform quite

well [Emmott et al., 2013] even for high-dimensional data. Further, these detectors

tend to reach their peak performance with a relatively small amount of training

data compared to what might be expected based on the dimensionality. The pri-

mary goal of this chapter is to move toward an understanding of these empirical

observations by analyzing the sample complexity of a certain class of anomaly

detectors.

The sample complexity of supervised learning has been widely studied and

is quite well understood via the framework of Probably Approximately Correct

(PAC) learning. However, this is not the case for anomaly detection, where vir-

tually all published work has focused on algorithms with good empirical perfor-

mance (with additional attention to computational speed, especially on big data

sets). A key step in the development of PAC learning theory was to formalize

the notion of a hypothesis space and to quantify the relationship between the

complexity of this space and the amount of training data required to identify a

good hypothesis in the space. In this chapter, we follow a similar approach. Our

framework is motivated by the observation that many state-of-the-art anomaly

detectors can be viewed as monitoring the probabilities of certain “patterns” in

the data, where a “pattern” is a subset (typically closed and compact) of the fea-

ture space. Outliers are then identified based on measures of those probabilities,

where points are ranked as more anomalous if they satisfy lower-probability pat-

terns. For example, the highly-competitive anomaly detection algorithm, Isolation

Forest [Liu et al., 2008], finds outliers by monitoring probabilities in the pattern

space of axis-aligned hyper-rectangles. Section 2.5 provides additional examples of
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the pattern spaces underlying a number of other state-of-the-art detectors. In our

analysis, a “pattern” will play the same role as a “hypothesis” in PAC learning,

and the pattern space complexity will determine the number of training examples

required for high accuracy.

A second key step in the development of PAC theory was to relax the goal of

finding the best possible hypothesis. Similarly, we will introduce an error parame-

ter ε that determines how accurately the algorithm must estimate the probabilities

of the patterns in the pattern space. We will then show that the required sample

size scales polynomially in 1/ε (as well as in several other parameters).

We call our formulation Rare Pattern Anomaly Detection (RPAD), and an

algorithm that provides PAC guarantees will be referred to as a PAC-RPAD al-

gorithm. We prove sample complexity results for any algorithm within the RPAD

framework. The framework captures the qualitative essence of many anomaly

detection algorithms. Note that we focus exclusively on sample complexity. Expe-

rience with the supervised PAC analysis has shown that sample complexity results

often give more insight than computational complexity results. Indeed, many com-

putational problems in PAC learning are NP-Hard and yet practical approximate

algorithms are known. Similarly, we expect that some of the computational PAC-

RPAD problems will also be NP-Hard, but existing algorithms, such as Isolation

Forest, already provide practical approximate solutions.

Prior work on one-class SVMs [Schölkopf et al., 2001] and learning minimum

volume sets [Scott and Nowak, 2006] have also provided sample complexity anal-

ysis relevant to anomaly detection. These approaches, however, are fundamen-

tally different than RPAD-style approaches. In particular, these approaches focus

on finding a common region/pattern in the input space that capture the normal

points. In contrast, our RPAD framework is based on finding rare regions/patterns

for directly extracting anomaly characteristics. Anomaly detection benchmarking

studies [Emmott et al., 2013] have shown that RPAD-style approaches tend to sig-

nificantly outperform “common pattern” approaches such as one-class SVM. Our

work is the first to analyze the sample complexity of the former approach.

The main contributions of this chapter are as follows. First, we present a formal

framework for RPAD (Section 2.2), which leads to the definition of PAC-RPAD

(Section 2.3). Second, we specify a simple generic algorithm, RarePatternDe-

tect, based on finding rare patterns. We derive sample complexity results for
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both finite pattern spaces and uncountable spaces of bounded complexity (Sec-

tion 2.4). Third, we give a number of applications of the theory to pattern spaces

that underly a number of state-of-the-art anomaly detection algorithms (Section

2.5). This, in part, helps explain why such algorithms consistently perform much

better than random in high-dimensional data. Fourth, we measure learning curves

on several benchmarks and for pattern spaces of varying complexity for RarePat-

ternDetect and another state-of-the-art anomaly detector over the same spaces

(Section 2.6). The results show that the RPAD-based algorithm can be compet-

itive with the state-of-the-art and that the detectors’ performances converge for

surprisingly small training sets.

2.2 Rare Pattern Anomaly Detection

We consider anomaly detection over a space of possible data points X ⊆ Rd,

which may be finite or infinite. Data from this space is generated according to

an unknown probability density function P over X . A common assumption in

anomaly detection is that P is a mixture of a normal component, which generates

normal data points, and an anomaly component, which generates anomalous data

points. Further, it is typically assumed that there is a much higher probability

of generating normal data than anomalies. This set of assumptions motivates

one approach to anomaly detection, which we call Anomaly Detection via Outlier

Detection. The idea is to estimate, for each query point x, the density P(x) based

on an (unlabeled) training sample of the data and assign an anomaly score to x

proportional to − logP(x), the “surprise” of x.

There are many problems with this approach. First, the probability density

may not be smooth in the neighborhood of x, so that P(x) could be very large and

yet be surrounded by a region of low or zero density (or vice versa). Second, even

under smoothness assumptions, density estimation is very difficult. For example,

the integrated squared error of kernel density estimation in d-dimensional space

(for a second-order kernel, such as a Gaussian kernel) converges to zero at a rate of

O(N−4/(4+d)) [Shalizi, 2016]. It follows that the sample size N required to achieve

a target accuracy grows exponentially in the dimension d.

In this chapter, we consider an alternative anomaly detection framework, which

we will refer to as Rare Pattern Anomaly Detection (RPAD). Informally, the main
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idea is to judge a point as anomalous if it exhibits a property, or pattern, that

is rarely exhibited in data generated by P . For example, in a computer security

application, a detector may monitor various behavior patterns associated with

processes accessing files. A process that exhibits an access behavior pattern that

has been rarely seen would be considered anomalous. One attractive feature of the

RPAD framework is that the notion of anomaly is grounded in the estimation of

pattern probabilities, rather than point densities. Pattern probability estimation is

quite well understood compared to density estimation. A second attractive feature

of the RPAD framework is that each detected anomaly comes with an explanation

of why it was considered anomalous. Specifically, the explanation can report the

rare patterns that the anomaly satisfies. Explanation methods have been developed

for density-estimation approaches (e.g. [Siddiqui et al., 2015]), but they are less

directly tied to the anomaly detection criterion.

Formally, a pattern h is a binary function over X . A pattern space H is a

set of patterns, which may be finite or infinite. As an example, if X is a finite

space of n-dimensional bit vectors, a corresponding finite pattern space could be

all conjunctions of length up to k. As another example, let X = [0, 1]n, the

n-dimensional unit cube, and consider the uncountable pattern space of all axis-

aligned k-dimensional hyper-rectangles in this cube. In this case, each pattern h is

a hyper-rectangle, such that h(x) is true if x falls inside it. The choice of pattern

space is an important consideration in the RPAD framework, since, in large part,

this choice controls the semantic types of anomalies that will be detected.

Each pattern h ∈ H has a probability P (h) = Pr ({x : h(x) = 1}) of being

satisfied by data points generated according to P . It will be useful to specify

the set of all patterns in H that a point x satisfies, which we will denote by

H[x] = {h ∈ H : h(x) = 1}. One approach to RPAD is to declare x to be

anomalous if there is a pattern h ∈ H[x], such that P (h) ≤ τ . This approach

is sensible when all patterns are approximately of the same “complexity”. How-

ever, when H contains a mix of simple and complex patterns, this approach can

be problematic. In particular, more complex patterns are inherently less likely

to be satisfied by data points than simpler patterns, which makes choosing a sin-

gle threshold τ difficult. For this reason, we introduced the normalized pattern

probability f(h) = P (h)/U(h), where U(h) is the probability of h being satisfied

according to a reference density U over X . When X is bounded, we typically take
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U to be a uniform density function. Thus, a small value of f(h) indicates that

under P , h is significantly more rare than it would be by chance, which provides

a better-calibrated notion of rareness compared to only considering P(h). If X is

unbounded, then an appropriate maximum entropy distribution (e.g., Gaussian)

can be chosen.

We can now define the notion of anomaly under the RPAD framework. We say

that a pattern h is τ -rare if f(h) ≤ τ , where τ is a detection threshold specified

by the user. A data point x is a τ -outlier if there exists a τ -rare h in H[x] and

otherwise x is said to be τ -common. Given τ and a stream of data drawn from

P , an optimal detector within the RPAD framework should detect all τ -outlier

points and reject all τ -common points. That is, we want to detect any point that

satisfies a τ -rare pattern and otherwise reject. An anomaly detector will make its

decisions based on some finite amount of sampled data, and we expect that the

performance should improve as the amount of data grows. Further, in analogy to

supervised learning, we would expect that the amount of data required to achieve

a certain level of performance should increase as the complexity of the pattern

space increases. We now introduce a formal framework for making these intuitions

more precise.

2.3 Probably Approximately Correct Framework

To address the sample complexity of RPAD, we consider a learning protocol that

makes the notion of training data explicit. The protocol first draws a training

data set D of N i.i.d. data points from P . An anomaly detector is provided

with D along with a test instance x that may or may not be drawn from P . The

anomaly detector then outputs “detect” if the instance is considered to be an

anomaly or “reject” otherwise. Note that the output of a detector is a random

variable due to the randomness of D and any randomization in the algorithm

itself. This protocol models a common use case in many applications of anomaly

detection. For example, in a computer security application, data from normal

system operation will typically be collected and provided to an anomaly detector

before it is activated.

The ideal correctness criterion requires that the test instance x be detected

if it is a τ -outlier and rejected otherwise. However, as we discussed above, this
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notion of correctness is too strict for the purpose of sample complexity analysis.

In particular, such a criterion requires distinguishing between pattern probabilities

that fall arbitrarily close to each side of the detection threshold τ , which can

require arbitrarily large training samples. For this reason, we relax the correctness

criterion by introducing a tolerance parameter ε > 0. The detector is said to be

approximately correct at level ε if it detects all τ -rare points and rejects all (τ + ε)-

common points. For test points that are neither τ -rare nor (τ + ε)-common, the

detector output can be arbitrary. The value of ε controls the false positive rate of

the detector, where smaller values of ε will result in fewer false positives relative

to the detection threshold.

We now define the PAC learning objective for RPAD. A detection algorithm

will be considered PAC-RPAD if with high-probability over draws of the training

data it produces an approximately correct output for any x ∈ X .

Definition 2.3.1. (PAC-RPAD) Let A be a detection algorithm over pattern space

H with input parameters 0 < δ < 1, 0 < τ , 0 < ε, and the ability to draw a training

set D of any size N from P. A is a PAC-RPAD algorithm if for any P and any

τ , with probability at least 1 − δ (over draws of D), A detects all τ -outliers and

rejects all (τ + ε)-commons.

The sample complexity of a PAC-RPAD algorithm for H is a function of the

inputs N(δ, ε) that specifies the number of training examples to draw. We expect

that the sample complexity will increase as the complexity of H increase, as the

dimensionality d of points increases, and as the failure probability δ decreases.

Further, we expect that the sample complexity will increase for smaller values

of the tolerance parameter ε, since this controls the difficultly of distinguishing

between τ -rare and (τ + ε)-common data points. Accordingly we say that a PAC-

RPAD algorithm is sample efficient if its sample complexity is polynomial in d, 1
δ
,

and 1
ε
.

2.4 Finite Sample Complexity of RPAD

We now consider a very simple algorithm, called RarePatternDetect, which

will be shown to be a sample efficient PAC-RPAD algorithm for bounded complex-

ity pattern spaces. The algorithm is given in Table 2.1 and first draws a training

set D of size N(δ, ε). Here N(δ, ε) will depend on the pattern space complexity
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Table 2.1: RarePatternDetect Algorithm

Input: δ, τ , ε

1. Draw a training set D of N(δ, ε) instances from P .

2. Decision Rule for any x:
If HasRarePattern(x,D,H, τ+ε/2) then return “detect”
Otherwise return “reject”.

HasRarePattern(x,D,H, µ)

:= {h ∈ H[x] : f̂(h) ≤ µ} 6= ∅

and will be specified later in this section. The training set is used to estimate the

normalized pattern probabilities given by

f̂(h) =
1

|D| · U(h)
|{x ∈ D : h(x) = 1}|.

Here, we assume that U(h) can be computed analytically or at least closely ap-

proximated. For example, when U is uniform over a bounded space, U(h) is

proportional to the volume of h.

After drawing the training set, RarePatternDetect specifies a decision

rule that detects any x as anomalous if and only if it satisfies a pattern with esti-

mated frequency less than or equal τ + ε/2. This test is done using the subroutine

HasRarePattern(x,D,H, µ), which returns true if there exists a pattern h in

H[x] such that f̂(h) ≤ µ. For the purposes of sample complexity analysis, we will

assume an oracle for HasRarePattern. For sufficiently complex pattern spaces,

the problem addressed by HasRarePattern will be computational hard. Thus,

in practice, a heuristic approximation will be needed, for example, based on tech-

niques developed in the rare pattern mining literature. In practice, we are often

interested in having an anomaly detector return an anomaly ranking over multiple

test data points. In this case, the algorithm can rank a data point x based on a

score equal to the minimum normalized frequency of any pattern that it satisfies,

that is, score(x) = min{f̂(h) : h ∈ H[x]}. It remains to specify N(δ, ε) in order

to ensure that RarePatternDetect is PAC-RPAD. Below we do this for two
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cases: 1) finite pattern spaces, and 2) pattern spaces with bounded VC-dimension.

Later, in Section 2.5 we will instantiate these results for specific pattern spaces

that underly several existing anomaly detection algorithms.

2.4.1 Sample Complexity for Finite H
For finite pattern spaces, it is relatively straightforward to show that as long as

log |H| is polynomial in d then RarePatternDetect is a sample efficient PAC-

RPAD algorithm.

Theorem 2.4.1. For any finite pattern space H, RarePatternDetect is PAC-

RPAD with sample complexity N(δ, ε) = O
(

1
ε2

(
log |H|+ log 1

δ

))
.

Proof. Suppose, X is a Bernoulli random variable with parameter P (h) for a pat-

tern h, i.e., E[X] = P (h). Let, Y = X
U(h)

, hence, Y is a random variable with

E[Y ] = E[X]
U(h)

= P (h)
U(h)

= f(h). We also observe that the maximum value of Y is 1
U(h)

.

Given N samples x1, x2, ..., xN , each xi ∼ P , we estimate f̂(h) = 1
N

∑N
i=1

I[xi∈h]
U(h)

.

We seek a confidence interval [L(h), R(h)] for f(h) that is narrow enough that it

does not simultaneously contain both τ and τ + ε. The reason is that if L(h) > τ ,

then with probability 1− δ, f(h) > τ , so h is not a τ -rare pattern. If R(h) < τ + ε,

then with probability 1− δ, h is not a τ + ε-common pattern, so it is safe to treat

it as τ -rare. Hence, the confidence interval should be [f̂(h)− ε/2, f̂(h) + ε/2], and

its “half width” is ε/2. So, we want to bound (by δ) the probability that f̂(h) is

more than ε
2

away from its true value f(h). Now, using the Hoeffding bound we

have

P
(
|EP [f̂(h)]− f̂(h)| > ε

2

)
⇐⇒ P

(∣∣∣∣∣f(h)− 1

N

N∑
i=1

I[xi ∈ h]

U(h)

∣∣∣∣∣ > ε

2

)

≤ 2 exp

(
−ε

2

2
U(h)2N

)
.

Since H is finite, we can bound the above probability for all h ∈ H using the

union bound: 2|H| exp
(
− ε2

2
U2
minN

)
, where, Umin = minh∈H U(h). We want this
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quantity to be less or equal to δ:

2|H| exp

(
−ε

2

2
U2
minN

)
≤ δ =⇒ N ≥ 2

ε2
1

U2
min

log
2|H|
δ

.

Hence, the sample complexity is O
(

1
ε2

(
log |H|+ log 1

δ

))
.

2.4.2 Sample Complexity for Infinite H
When the sample space X is continuous, it is typically the case that the corre-

sponding pattern space will be infinite and hence not covered by the above result.

As is standard in supervised learning, we will characterize the complexity of in-

finite pattern spaces via the VC-dimension [Vapnik and Vapnik, 1998], which we

denote by VH. The VC-dimension of H is equal to the maximum number of points

that can be shattered by patterns in H. Here a set of points D is shattered by H
if for any subset D′ of D there is an h ∈ H such that h(x) = 1 for all x ∈ D′ and

h(x) = 0 for all x ∈ D −D′. That is, patterns in H can be used to define all pos-

sible bi-partitions of D. For many interesting pattern spaces, the VC-dimension

scales polynomially with the data dimension d. The following result exploits this

property by showing that if a space has VC-dimension that is polynomial in d,

then the space is sample-efficient learnable in the PAC-RPAD model.

Theorem 2.4.2. For any pattern space H with finite VC-dimension VH,

RarePatternDetect is PAC-RPAD with sample complexity

N(δ, ε) = O
(

1
ε2

(
VH log 1

ε2
+ log 1

δ

))
.

Proof. When the pattern space H is infinite, we want to bound the probability

P
(

suph∈H |f̂(h)− f(h)| > ε
2

)
, which can be achieved by bounding

P

(
sup
h∈H
|P̂ (h)− P (h)| > ε

2
Umin

)
,

where, P̂ (h) is an estimate of P (h) based on sampled data. Let, εf = ε
2
Umin. Using

the VC uniform convergence bound on frequency estimates [Devroye et al., 2013,
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Thm. 12.5] we have

P

(
sup
h∈H
|P̂ (h)− P (h)| > εf

)
≤ 8SH(N)e−Nε

2
f/32. (2.1)

where, P̂ (h) is an estimate based on N i.i.d. samples from P and SH(N) is the

Shatter Coefficient, which is the largest number of subsets that can be formed by

intersecting some set of N points with patterns from H.
Now, for any N > 2VH, we can bound the Shatter Coefficient as: SH(N) <

( eNVH )VH [Devroye et al., 2013, Thm. 13.3]. Hence, from Equation 2.1 we have

P

(
sup
h∈H
|P̂ (h)− P (h)| > εf

)
< 8(

eN

VH
)VHe−Nε

2
f/32. (2.2)

We want to bound this probability by δ, which yields

N ≥ 32

ε2f

(
VH log(N) + VH log

e

VH
+ log

8

δ

)
. (2.3)

Using the fact that log(N) ≤ αN − log(α)− 1, where, N,α > 0 and setting α =
ε2f

64VH
, we get

32VH
ε2f

log(N) ≤ 32VH
ε2f

(
ε2f

64VH
N − log

ε2f
64VH

− 1

)

=
N

2
+

32VH
ε2f

log
64VH
ε2fe

. (2.4)

Applying results from Equation 2.4 into Equation 2.3 and substituting the original
value of εf we prove the Theorem 2.4.2:

N ≥ 256

ε2
1

U2
min

(
VH log

(
256

ε2
1

U2
min

)
+ log

8

δ

)
.
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2.5 Application to Specific Pattern Spaces

Most state-of-the-art anomaly detectors assign an anomaly score to data points

and then detect points based on a score threshold or present a ranked list to

the user. Further, while not usually explained explicitly, the scores are often

based on frequency estimates of patterns in some space H with rare patterns

leading to higher anomaly scores. While RarePatternDetect was designed as

a pure implementation of this principle, it is reasonable to expect that its sample

complexity is related qualitatively to the sample complexity of other algorithms

grounded in pattern frequency estimation.

In this section, we consider a number of pattern spaces underlying existing

algorithms and show that the sample complexity of those spaces is small. The

spaces are thus all learnable in the PAC-RPAD framework, which offers some

insight into why existing algorithms often show strong performance even in high-

dimensional spaces.

2.5.1 Conjunctions

Consider a space X over d Boolean attributes and a pattern spaceH corresponding

to conjunctions of those attributes. This setup is common in the data mining lit-

erature, where each boolean attribute corresponds to an “item” and a conjunction

corresponds to an “item set”, which indicates which items are in the set. Rare

pattern mining has been studied for such spaces and applied to anomaly detec-

tion [Adda et al., 2007, Szathmary et al., 2007]. In this case, the pattern space has

a finite size 2d and thus by Theorem 2.4.1 is efficiently PAC-RPAD learnable with

sample complexity O
(

1
ε2

(
d+ log 1

δ

))
. If we limit attention to conjunctions of at

most k attributes, then the sample complexity drops to O
(

1
ε2

(
k log(d) + log 1

δ

))
,

which is sub-linear in d.

2.5.2 Halfspaces

Given a continuous space X ⊆ <d, a half space pattern is an oriented d-dimensional

hyperplane. A data point satisfies a half space pattern if it is on the positive side

of the hyperplane. The half-space mass algorithm [Chen et al., 2015] for anomaly

detection operates in this pattern space. Roughly speaking, the algorithm assigns
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a score to a point x based on the frequency estimates of random half spaces that

contain x. The VC-dimension of d-dimensional half spaces is well known to be

d+ 1 and hence this space is sample-efficient learnable in the PAC-RPAD model.

2.5.3 Axis Aligned Hyper Rectangles

For a continuous space X ⊆ <d, an axis-aligned hyper rectangle (bounded or

unbounded) can be specified as a conjunction of threshold tests on a subset of

the dimensions. The pattern space of axis-aligned rectangles are often implicit in

decision tree algorithms, where each internal tree node specifies one threshold test.

The state-of-the-art anomaly detectors, Isolation Forest [Liu et al., 2008] and

RS-Forest [Wu et al., 2014] (among others), are based on this space. The core

idea of these algorithms is to build a forest of T random decision trees, where

each node specifies a random threshold test. The trees are grown until either

a maximum depth is reached or a leaf node contains only a single data point.

Each leaf corresponds to an axis-aligned hyper rectangle. Given a point x, the

algorithm can compute the leaf node it reaches in each tree, yielding a set of

T hyper-rectangle patterns. The score for x is then based on the average score

assigned to each pattern, which is related to the pattern frequency, dimension, and

volume.

The VC-dimension of the space of axis parallel hyper rectangles in <d is 2d

[Blumer et al., 1989]. Thus, the pattern space underlying Isolation Forest and

RS-Forest is sample-efficient learnable in the PAC-RPAD model.

2.5.4 Stripes

A stripe pattern in <d can be thought of as an intersection of two parallel halfspaces

with opposite orientations and can be defined by the inequalities: a ≤ w>x ≤ a+∆,

where, w ∈ <d, a and ∆ ∈ < and ∆ represents the width of the stripe. The stripe

pattern space consists of the set of all such stripes.

The very simple, but effective, anomaly detector, LODA [Pevnỳ, 2016], is based

on the stripes pattern space. The main idea of LODA is to form a set of T sparse

random projections along some random directions in the subspaces of <d and then

estimate a discretized 1D histogram based on the projected values. Each bin of each

histogram can be viewed as corresponding to a stripe in the original <d space with
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orientation defined by the direction of the random projection and location/width

defined by the bin location/width.

To the best of our knowledge the VC-dimension of the stripes pattern space has

not been previously derived. A loose bound can be found by noting that stripes are

a special case of the more general pattern space of intersections of half spaces and

then applying the general result for bounding the VC-dimension of intersections

[Blumer et al., 1989], which gives an upper bound on the VC-dimension of stripes

of 4 log(6)(d+ 1) = O(d). Hence, stripes are PAC learnable in the RPAD model.

2.5.5 Ellipsoids and Shells

Anomaly detectors based on estimating “local densities” often form estimates

based on frequencies observed in ellipsoids around query points. In particular,

an ellipsoid pattern in a d dimensional space can be represented by

(x− µ)>A (x− µ) ≤ t,

where t ∈ <, µ ∈ <d and A is a d × d positive definite symmetric matrix. An

upper bound for the VC-dimension of ellipsoids in d-dimensional space <d is

(d2 + 3d)/2 [Auger and Doerr, 2011]. Hence the ellipsoid pattern space is sample-

efficient learnable in the PAC-RPAD model. However, we see that the complexity

is quadratic in d rather than linear as we saw above for spaces based on hyperplane

separators. A related pattern space is the space of ellipsoidal shells, which is the

analog of stripes for ellipsoidal patterns. An ellipsoidal shell in <d can be thought

of as the subtraction of two ellipsoids with the same center and shape, but different

volumes. That is, the shell is a region defined by t ≤ (x − µ)>A(x − µ) ≤ t + ∆,

where ∆ ∈ < is the width. Shells naturally arise as the discretized level sets of

multi-dimensional Gaussian density functions, which are perhaps the most widely-

used densities in anomaly detection. We are unaware of previous results for the

VC-dimensions of shells and show below that it is also O(d2).

Theorem 2.5.1. The VC-dimension of the ellipsoidal shell pattern space in <d is

upper bounded by 2 log(6)(d2 + 3d+ 2).
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Proof. We can represent an ellipsoidal shell in <d as:

t ≤ (x− µ)>A (x− µ) ≤ t+ ∆. (2.5)

Rewriting the equation of an ellipsoid in <d:

(x− µ)>A (x− µ) ≤ t
=⇒ x>A x− 2x>A µ ≤ t− µ>A µ

=⇒
d∑

i,j=1

Aijxixj −
d∑
i=1

2(Aµ)ixi ≤ t− µ>Aµ

=⇒ w>z ≤ b. (2.6)

where, w, z ∈ <d(d+1)/2+d. The vector w is a new parameter vector constructed

from the original parameters. The matrix A gives d(d + 1)/2 unique parameters,

since A is symmetric, and the vector Aµ gives another d parameters. The vector

z is a new input constructed from the original input x, and b = t− µ>Aµ.
Now, Applying result of Equation 2.6 to Equation 2.5 we get

t− µ>A µ ≤ w>z ≤ t+ ∆− µ>A µ

=⇒ t′ ≤ w>z ≤ t′ + ∆. (2.7)

The Equation 2.7 is a representation of a stripe in <d(d+1)/2+d. So, we apply the

same approach from previous Section 2.5.4 i.e. the case of two halfspaces, which

gives the upper bound of

4 log(6)(d(d+ 1)/2 + d+ 1) = 2 log(6)(d2 + 3d+ 2) = O(d2)

.

2.6 Experiments

The above results suggest one reason for why state-of-the-art anomaly detectors

often perform significantly better than random, even on high-dimensional data.

However, existing empirical work does not go much further in terms of provid-

ing an understanding of learning curves for anomaly detection. To the best of

our knowledge, there has not been a significant study of how the empirical per-
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formance of anomaly detectors varies as the amount of training/reference data

increases. Typically empirical performance is reported for benchmark data sets

without systematic variation of training set size, though other factors such as

anomaly percentage are often varied. This is in contrast to empirical studies in

supervised learning, where learning curves are regularly published, compared, and

analyzed.

In this section, we present an initial investigation into empirical learning curves

for anomaly detection. We are interested in the following experimental questions:

1) Will the empirical learning curves demonstrate the fast convergence predicted

by the PAC-RPAD framework, and how is the convergence impacted by the data

dimension and pattern space complexity? 2) How does the RPAD approach com-

pare to a state-of-the-art detector based on the same pattern space on anomaly

detection benchmarks? 3) In what ways do empirical learning curves for anomaly

detection differ qualitatively from learning curves for supervised learning? While

a complete empirical investigation is beyond the scope of this study, below we

provide experiments that shed light on each of these questions.

2.6.1 Pattern Space and Anomaly Detector Selection

A recent large scale evaluation [Emmott et al., 2013] has shown that the Isolation

Forest (IF) is among the top performing anomaly detectors across a wide range of

benchmarks. This motivates us to focus our investigation on IF’s pattern space

of axis aligned hyper rectangles (see above). In order to allow for the complexity

of this pattern space to be varied, we define REC(k) to be the space of all axis

aligned hyper rectangles defined by at most k threshold tests on feature values.

The first step of IF is to construct a random forest of trees that are limited to a

user-specified maximum leaf depth of k. Each tree leaf in the forest corresponds to

a single pattern in REC(k). Thus, the first step of IF can be viewed as generating

a random pattern space Hk ⊆ REC(k) that contains all leaf patterns in the forest.

IF then operates by using training data to compute empirical frequencies P̂ (h) of

patterns in Hk and then for any test point x computes an anomaly score based on

those frequencies as follows (smaller is more anomalous):

IF(x) =
∑

h∈Hk[x]

dh + c(P̂ (h))
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where, dh ≤ k is the number of tests in pattern h and c(h) is a function of the

empirical frequency of h.1

In order to directly compare IF to our RPAD approach we will conduct multiple

experiments, each one using a different randomly generated pattern space Hk. We

can then compute the scoring function corresponding to RarePatternDetect

on those pattern spaces and compare to the performance of the IF scoring function.

In particular, RarePatternDetect effectively assigns a score to x based on the

minimum frequency pattern as follows:

MIN(x) = min
h∈Hk[x]

f̂(h)

where the normalized frequency estimate f̂(h) is normalized by a uniform den-

sity U(h) over a region of bounded support defined by the training data. This

normalizer is proportional to the volume of h and is easily computed. We see

that compared to the IF scoring function with sums/averages over functions of

each pattern in Hk[x], the MIN scoring function is only sensitive to the minimum

frequency pattern. In order to provide a baseline in between these two, we also

compare to the following alternative scoring function that averages normalized

frequencies. This scoring function is given by

AVE(x) =
1

|Hk[x]|
∑

h∈Hk[x]

f̂(h).

AVE is included in order to observe whether averaging is a more robust approach

to using normalized frequencies compared to MIN.

2.6.2 Learning Curve Generation

We generate learning curves using three existing anomaly detection benchmarks:

Covertype [Wu et al., 2014]: d = 10 features, approximately 286k instances 0.9%

1In particular, c(h) is an estimate of the expected number of random tests required to com-
pletely isolate training data points that satisfy h, which is a function of the number of training
points that satisfy h [Liu et al., 2008]. This score is motivated by attempting to estimate the
“isolation depth” of x, which is the expected length of a random path required to isolate a point.
Intuitively smaller isolation depths indicate a more anomalous point since it is easier to separate
from other points.
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Figure 2.1: Learning Curves for the Three Scoring Methods (IF, AVE, MIN) with
Varying Pattern Space Complexity k Over Three Benchmarks (Rows). MIN Rep-
resents the Main RPAD Approach Analyzed in this chapter.

anomalies.

Particle [Emmott et al., 2013]: d = 50 features, approximately 130k instances

with 5% anomalies.

Shuttle [Emmott et al., 2013]: d = 9 features, approximately 58k instances with

5% anomalies.

These datasets were originally derived from UCI supervised learning benchmarks

[Lichman, 2013] by treating one or more classes as the anomaly classes and sub-

sampling at an appropriate rate to produce benchmarks with certain percentages of

anomalies. We have conducted experiments on a number of additional benchmarks,

which are not included for space reasons. These three data sets were selected as

being representative of the qualitative learning curve types that we have observed.

The data sets are divided into three sets of data: pattern generation data, training
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data, and test data for which we ensure that the fraction of anomaly points in each

data set is approximately the same as for the full benchmark.

Given a benchmark and a specified pattern complexity k, we generate learning

curves for each algorithm as follows. First, we use IF to generate a random pattern

space Hk, based on the pattern generation data using a forest of 250 random trees.

Next for each desired training set size, we sample a training set of the appropriate

size and use that data to estimate frequencies overHk, which can be done efficiently

by passing each data point through each tree. Next, the scores defined above for

IF, MIN, and AVE are computed for each test instance based on the frequency

estimates and the Area Under the Curve (AUC) of those scores is computed relative

to the ground truth anomalies. This process is repeated 50 times for each training

set size and the resulting AUCs are averaged to produce a final learning curve.

2.6.3 Results

Figure 2.1 gives learning curves for each benchmark (rows) and each of the anomaly

detectors IF, MIN, and AVE (columns). Recall that MIN represents the main

RPAD approach analyzed in this chapter. In each case, four learning curves are

shown for pattern space complexities k = 1, 4, 7, 10 and training instances range

from 16 to 215.

Convergence rate: Each learning curve for each algorithm and benchmark

follows a trajectory starting at 16 training instances to a converged performance

at 215 points. We see that in all cases, convergence to the final performance occurs

very quickly, in particular around 1024 samples. This convergence rate is not

significantly impacted by the dimensionality of the data, which can be seen by

comparing the results for Particle with d = 50 to the other data sets with d = 9

and d = 10. Rather we see that the convergence rate visibly depends on the

pattern space complexity k, though to a relatively small degree. In particular, we

see that the convergence for the simplest space k = 1 tends to be faster than for

k = 10 across our experiments. These observations agree with our analysis. The

VC-dimension of REC(k), which controls worst case convergence, is dominated

by the limiting effect of k. These observations are consistent across additional

benchmarks not shown here.

Relative Algorithm Performance: Here we focus on comparing the differ-
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ent detectors, or scoring functions, in terms of their converged performance. For

the Cover and Shuttle data sets we see that the converged performance of MIN

is better or competitive than the converged performance of IF for all values of k.

For the Particle data set, the IF scoring function outperforms MIN consistently

by a small margin. This shows that despite its simplicity the RPAD approach

followed by MIN appears to be competitive with a state-of-the-art detector based

on the same pattern space. Experiments on other benchmarks, not shown, further

confirm this observation.

The converged performance of AVE tends to be worse than both IF and MIN

for Covertype and Particle and is slightly better on Shuttle. It appears that for

these data sets (and others not shown) that averaging is not significantly more

robust than minimizing and can even hurt performance. One reason for degraded

performance is that AVE can be influenced by the cumulative effect of a large

number of non-rare patterns, which may sometimes overwhelm the signal provided

by rare patterns.

An interesting observation is that for each data set, the best performing pattern

space (i.e. value of k) is usually the same across the different learning algorithms.

For example, for Covertype, k = 1 yields the best converged performance for all

scoring functions. This observation, which we also frequently observed in other

data sets, suggests that the choice of pattern space can have a performance impact

that is as large or larger than the impact of the specific scoring function used. To

understand this, note that the performance of an anomaly detector depends on

both the convergence of its scoring function and the match between the scoring

function and the semantic notion of anomaly for the application. The pattern space

choice has a large influence on the this match since it controls the fundamental

distinctions that can be made among data points.

Qualitative Properties: The qualitative behavior of the learning curves ex-

hibits a couple of nonintuitive properties compared to supervised learning curves.

First, in supervised learning, we typically expect and observe that more complex

hypothesis spaces converge to a performance that is at least as good as simpler

spaces, though more complex spaces may underperform at small sample sizes due

to variance. This does not appear to be the case for anomaly detection learning

curves in general. For example, the performance of the simplest pattern space

(k = 1) on Covertype converges to better performance than the more complex
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spaces. This has also been observed in other data sets and does not appear to be

due to premature termination of the learning curve. Rather, we hypothesize that

this behavior is due to the mismatch between the anomaly detection scores and

the semantic notion of anomaly in the benchmark. In particular, rare patterns

in REC(1) are apparently a better indicator of the semantic notion of anomaly

than some distracter rare patterns in REC(10). Indeed, it is straightforward to

construct synthetic examples with such behavior.

Another nonintuitive aspect is that, in at least two cases, the learning curves

consistently decrease in performance, while typically in supervised learning, ideal

learning curves are non-decreasing. The most striking example is the performance

of AVE on Shuttle, where all learning curves steadily decrease. After further

analysis, this type of behavior again appears to be explained by the mismatch

between the semantic notion of anomalies and the scoring function. In particular,

the variance across different trials of the learning curve for large sample sizes is

much smaller than for small sample sizes. It also turns out that the distribution of

scoring functions generated for the small sample sizes is skewed toward solutions

that better match the ground truth anomalies compared to the converged scoring

function. Thus, the average performance for small sample sizes is better. We have

observed this decreasing learning curve behavior in other data sets as well, though

it is much more common for learning curves to increase.

2.7 Summary

This chapter is motivated by the observation that many statistical anomaly detec-

tion methods perform much better than random in high dimensions using relatively

small amounts of training data. Our PAC-RPAD framework attempts to explain

these observations by quantifying the sample complexity in terms of the complexity

of the pattern spaces underlying such anomaly detectors. Our results mirror those

in supervised learning by showing that the VC-dimension of the pattern spaces

is the dominating factor that controls sample complexity. We showed that for

several state-of-the-art detectors, the underlying pattern spaces had well-behaved

VC-dimensions with respect to the data dimensionality, which offers a partial ex-

planation for their good performance. On the empirical side, we investigated for

the first time, to the best of our knowledge, learning curves for anomaly detection.
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The experiments confirmed the fast convergence predicted by the theory. The re-

sults also suggest that our simple algorithm, which was shown to be PAC-RPAD,

is competitive with the state-of-the-art algorithm Isolation Forest when using the

same pattern space. Finally, the learning curves showed some interesting qualita-

tive differences compared to supervised learning curves. In particular, the results

highlight the importance of selecting a pattern space that is likely to be a good

match to the semantic notion required for an application.
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Chapter 3: Sequential Feature Explanations (SFE)

3.1 Introduction

As described in Chapter 1, anomaly detection is the problem of identifying anoma-

lies in a data set, where anomalies are those points that are generated by a

process that is distinct from the process generating “normal” points. Statisti-

cal anomaly detectors address this problem by seeking statistical outliers in the

data. In most applications, however, statistical outliers will not always correspond

to the semantically-meaningful anomalies. For example, in a computer security

application, a user may be considered statistically anomalous due to an unusually

high amount of copying and printing activity, which may have a benign explana-

tion and hence is not a true and interesting anomaly. Because of this gap between

statistics and semantics, an analyst typically investigates the statistical outliers

in order to decide which ones are likely to be true anomalies and deserve further

action.

Given an outlier point, an analyst faces the problem of examining the data

associated with that point in order to make a judgment about whether it is an

anomaly or not. Even when points are described by just tens of features this can

be challenging, especially so when feature interactions are critical to the judgment.

In practice, the situation is often much worse with points being described by thou-

sands of features. In these cases, there is a significant risk that even when the

detector passes a true anomaly to the analyst, the analyst will not recognize the

key properties that make the point anomalous due to information overload. This

means that, in effect, the missed anomaly rate of the overall system is a combi-

nation of the miss rates of both the anomaly detector and the analyst. Thus, one

avenue for improving detection rates is to reduce the effort required by an ana-

lyst to correctly identify anomalies, with the intended side-effect of reducing the

analyst miss rate. This anomaly detection pipeline is depicted in Figure 3.1.

In this chapter, we consider reducing the analyst’s detection effort by providing

them with explanations about why points were judged to be anomalous by the

detector. Given such an explanation, the analyst can minimize his effort in the
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Figure 3.1: The anomaly detection pipeline addressed by this chapter (from left
to right). The original data set contains both normal points and anomalies. Our
goal is detect the true semantic anomalies. First an anomaly detector is applied to
identify a set of statistical outliers, which are further analyzed by a human analyst
in order to identify the true semantic anomalies. The false negatives (missed true
anomalies) of the overall system are composed of two types of true anomalies: 1)
anomalies that are considered to be statistically normal and are never presented to
the human analyst, and 2) anomalies that are statistical outliers but are misiden-
tified by the human analyst as normal. The first type of false negative can only be
avoided by changing the anomaly detector and are not the focus of this chapter.
The second type of false negative can be avoided by making it easier for analysts
to detect true anomalies when presented with them. The focus of this chapter is
to compute explanations of statistical outliers that reduce the effort required to
detect such true anomalies.

investigation by focusing on information related to the explanation.

Our first contribution is to introduce an intuitive and simple form of explana-

tion, which we refer to as sequential feature explanations (SFEs). Given a point

judged to be an outlier by a detector, an SFE for that point is an ordered sequence

of features where the order indicates the importance with respect to causing a high

outlier score. An SFE is presented to the analyst by incrementally revealing the

features one at a time, in order, until the analyst has acquired enough information

to make a decision about whether the point is an anomaly or not (e.g. in the

security domain, a threat or non-threat). The investigative work of the analyst is

roughly related to the number of features that must be revealed. Hence, the goal

for computing SFEs is to minimize the number of features that must be revealed

in order for the analyst to confidently identify true anomalies.

Our second contribution is to formalize the problem of optimizing SFEs and
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to develop algorithms to solve that problem. We develop both greedy algorithms

and an optimal algorithm based on branch-and-bound search. These algorithms

can be applied to any density-based anomaly detector given that it is possible to

(approximately) compute joint marginals of a detector’s density function which is

an operation that is supported by most commonly-used densities.

Our third contribution is to formulate a quantitative method for evaluating

SFEs which allows for the comparison of different SFE algorithms. The key idea

of the approach is to construct a simulated analyst for each anomaly detection

benchmark using supervised learning and ground truth about which points are

anomalies. The simulated analyst can then be used to evaluate the quality of SFEs

with respect to the number of features that must be revealed to reach a specified

confidence level. While in concept a human analyst could be used in the evaluation

process, it is impractical to conduct a large number of such human-analyst exper-

iments over a large number of benchmarks. Hence, in this chapter we focused on

how to conduct large scale quantitative evaluations—necessarily using simplified

analyst models. To the best of our knowledge this is the first methodology for

quantitatively evaluating any type of anomaly explanation method.

Finally, our fourth contribution is to provide an empirical investigation of sev-

eral methods for computing SFEs. Our primary evaluations use a recently con-

structed set of anomaly detection benchmarks derived from real-world supervised

learning data. In addition we provide an evaluation on the standard KDD-Cup

benchmark. The investigation leads to a recommended method and additional

insights into the methods.

The remainder of the chapter is organized as follows. Section 3.2 reviews related

work on explanations for both supervised learning and anomaly detection. Next,

Section 3.3 presents the anomaly-detection framework used in this chapter. Section

3.4 then more formally presents the concept of SFEs and possible quality metrics.

Section 3.5 formulates an optimal SFE computation method and then describes two

greedy methods for computing SFEs. Section 3.7.2 shows a comparison between

the optimal and greedy methods in achieving the optimal objective value. Section

3.6 introduces our quantitative evaluation framework for SFEs and finally Section

3.7 presents experiments evaluating the introduced methods within the framework.
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3.2 Related Work

In both supervised learning tasks and unsupervised ones like anomaly detection,

the problem of computing explanations has received relatively little attention. Re-

lated work in the area of supervised classification aims to provide explanations

about why a classifier predicted a particular label for a particular instance. For

example, a number of methods have been proposed to produce explanations in the

form of relevance scores for each feature, which indicate the relative importance

of a feature to the classification decision. Such scores have been computed by

comparing the difference between a classifier’s prediction score and the score when

a feature is assumed to be unobserved [Robnik-Sikonja and Kononenko, 2008], or

by considering the local gradient of the classifier’s prediction score with respect to

the features for a particular instance [Baehrens et al., 2010].

Other work has considered how to score features in a way that takes into

account the joint influence of feature subsets on the classification score, which

usually requires approximations due to the exponential number of such subsets

[Strumbelj and Kononenko, 2010, Štrumbelj and Kononenko, 2013]. Since these

methods are typically based on the availability of a class-conditional probability

function, they are not directly generalizable to computing explanations for anomaly

detectors. Our experiments, however, do evaluate a method, called Dropout, which

is inspired by the approach of [Robnik-Sikonja and Kononenko, 2008].

The form of such feature-relevance explanations is similar in nature to our

SFEs in that they provide an ordering on features. However, prior work has not

explicitly considered the concept of sequentially revealing features to an analyst,

which is a key part of the SFE proposal for reducing analyst effort.

Prior work on feature-based explanations for anomaly detection has focused

primarily on computing explanations in the form of feature subsets. Such expla-

nations are intended to specify the subset of features that are jointly responsi-

ble for an object receiving a high anomaly score. For example, Micenkova, et

al. [Micenková et al., 2013] computed a subset of features such that the projection

of the anomalous object onto the features shows the greatest deviation from normal

instances. Some authors have referred to this explanation task as “outlying aspects

mining” [Duan et al., 2014, Vinh et al., 2015]. For example, Duan et al. developed

a method called OAMiner [Duan et al., 2014], which finds the most outlying sub-

space where the object of interest is ranked highest in terms of probability density
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measure. Vinh et al. proposed a method called OARank [Vinh et al., 2015], which

gives a feature ranking based on their potential contribution toward the outlying-

ness of a query point. One issue with these approaches is that the computation of

an explanation is independent of the anomaly detector being employed, i.e., they

don’t consider the very anomaly detector that judged the instances as anomalous.

Rather, they generate pseudo-training data and train a completely different model

that has no information at all about the original anomaly detector. This is con-

trary to the goal of trying to explain why a particular anomaly detector judged

a particular object to be anomalous. In contrast, the explanation approaches we

consider in this chapter are sensitive to the particular anomaly detector.

Other work on computing feature-subset explanations [Dang et al., 2013] de-

veloped an anomaly detection system called LODI which includes a specialized

explanation mechanism for the particular anomaly detector. A similar approach

is considered by Dang, et al. [Dang et al., 2014], where the anomaly detection

mechanism directly searches for discriminative subspaces that can be used for the

purpose of explanation. In contrast, the explanation approaches we consider in

this work can be instantiated for any anomaly detection scheme based on density

estimation, which includes a large fraction of existing detectors.

Existing approaches for evaluating explanation methods in both supervised

and unsupervised settings are typically quite limited in their scope. Often evalua-

tions are limited to visualizations or illustrations of several example explanations

[Baehrens et al., 2010, Dang et al., 2014] or to test whether a computed expla-

nation collectively conforms to some known concepts in the corresponding data

set [Baehrens et al., 2010], often for synthetically generated data. Prior work has

not yet proposed a larger scale quantitative evaluation methodology for explana-

tions, which is one of the main contributions of our work.

3.3 Anomaly Detection Formulation

We reiterate the anomaly detection problem which can be defined over a set of

N data points {x1, . . . , xN}, where each point xi is an n dimensional real-valued

vector. The set contains a mixture of normal points and anomaly points, where

generally the normal points account for an overwhelming fraction of the data.

In most applications of anomaly detection, the anomaly points are generated by
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a distinct process from that of the normal points, in particular, a process that

is important to detect for the particular application. The goal is to detect this

process. For example, the data points may describe the usage behavior of all users

of a corporate computer network and the anomalies may correspond to insider

threats.

Since N is typically large, manual search for anomalies through all points is

generally not practical. Statistical anomaly detectors address this issue by seeking

to identify anomalies by finding statistical outliers. The problem, however, is that

not all outliers correspond to anomalies, and in practice an analyst must examine

the outliers to decide which ones are likely to be anomalies. We say that an

analyst detects an anomaly when he or she is presented with a potential anomaly

and is able to determine that there is enough evidence that the point is indeed an

anomaly. The success of this approach depends on the anomaly detector’s precision

of identifying anomalies as outliers, and also on the analysts’ ability to correctly

detect anomalies. Without further assistance, an analyst may need to consider

information related to all n features of an anomaly point during analysis. In many

cases, considering this information thoroughly will be impossible and increases

the chance of not detecting anomalies. Something which can be costly in many

domains.

3.4 Sequential Feature Explanations

In order to reduce the analyst’s effort for detecting anomalies, we propose to pro-

vide the analyst with sequential feature explanations (SFEs) that attempt to effi-

ciently explain why a point was considered to be an outlier. A length k SFE for a

point is an ordered list of feature indices E = (e1, . . . , ek), where ei ∈ {1, . . . , n}.
The intention is that features that appear earlier in the order are considered to be

more important to the high outlier score of a point (e.g. xe1 is the most impor-

tant). We will use the notation Ei to denote the set of the first i feature indices of

E. Also, for any set of feature indices S and a data point x, we let xS denote the

projection of x onto the subspace specified by S.

Given an SFE E for a point x, the point is incrementally presented to the

analyst by first presenting only feature xE1 . If the analyst is able to make a

judgement based on only that information then we are finished with the point.
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Otherwise, the next feature is added to the information given to the analyst, that

is, the analyst now sees xE2 . The process of incrementally adding features to the

set of presented information continues until the analyst is able to make a decision.

The process may also terminate early because of time constraints; however, we

don’t study that case in this chapter.

For normal points, the incremental presentation of SFEs may not help the

analyst more efficiently exonerate the points. In contrast, for anomalies, it is

reasonable to expect that an analyst would be able to detect the anomalies more

easily by considering a much smaller amount of information than they would have

to without the SFE, which should reduce the chance of missed detections. To

clarify further, we assume the analyst has the expertise to decide with certainty

whether an instance is an anomaly from the entire set of features if given enough

time. However, the effort required to determine the anomaly may be large if all

the information is shown at the start. Further, it is assumed that if the minimal

set of features responsible for the anomaly are shown, the effort may be reduced

(they see the minimal number of feature interactions). Hence, we assume that

the amount of analyst effort is a monotonically increasing function of the number

of features considered. This motivates measuring the quality of an SFE for a

target by the number of features that must be revealed to an analyst for correct

detection. More formally, given an anomaly point x, an analyst a, and an SFE E

for x, the minimum feature prefix, denoted MFP(x, a, E), is the minimum number

of features that must be revealed to a, in the order specified by E, for a to detect

x as an anomaly. The analyst may very well consult other information during an

investigation. The hope is that simple and good explanations will allow the analyst

to efficiently direct their attention to the key external information.

While MFP provides a quantitative measure of SFE quality, its definition re-

quires access to an analyst. This complicates the comparison of SFE computation

methods in terms of MFP. Section 3.6 addresses this issue and describes an ap-

proach for conducting wide evaluations in terms of MFP.

3.5 Explanation Methods

We now consider methods for computing SFEs for anomaly detectors. Prior

work on computing explanations for anomaly detectors has either computed ex-
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planations that do not depend on the particular anomaly detector used (e.g.,

[Micenková et al., 2013]) or used methods that were specific to a particular anomaly

detector (e.g., [Dang et al., 2013]). We wish to avoid the former approach since

intuitively an explanation should attempt to indicate why the particular detector

being employed found a point to be an outlier. Considering the latter approach,

we seek more general methods that can be applied more widely across different de-

tectors. Thus, here we consider explanation methods for the widely-studied class

of density-based detectors.1

Density-based detectors operate by estimating a probability density function

f(x) (e.g. a Gaussian mixture) over the entire set of N points and treating f as

the density over normal points. This is reasonable under the usual assumption

that anomalies are very rare compared to normal points. Points are then ranked

according to ascending values of f(x) so that the least normal objects according

to f are highest in the order. Our methods do not assume knowledge of the form

of f , but do require an interface to f that allows for joint marginal values to be

computed. That is, for any subset of feature indices S and point x, we require

that we can compute f(xS). For many choices of f , such as mixtures of Gaussians,

these joint marginals have simple closed forms. If no closed form is available, then

exact or approximate inference techniques (e.g., MCMC) may be employed.

It is worth noting that by considering SFE methods that depend on the anomaly

detector being used, the performance in terms of MFP will depend on the qual-

ity of the anomaly detector as well as the SFE method. For example, consider a

situation where the anomaly detector judges an anomaly point x to be an outlier

for reasons that are not semantically relevant to why x is an anomaly. The SFE

for x is not likely to help the analyst to more efficiently determine that x is an

anomaly, since the semantically critical features may appear late in the ordering.

While this is a possibility, it is out of the control of the SFE method. Thus, when

designing SFE methods we will assume that outlier judgements made on f are

semantically meaningful with respect to the application. This is a reasonable as-

sumption since the SFE methods aim to explain the “reasoning” of the anomaly

detector, regardless of whether or not the anomaly detector is bad (e.g. a mis-

1Our methods can actually be employed on the more general class of “score-based detectors”
provided that scores can be computed given any subset of features. For simplicity, we focus on
density-based detectors in this chapter, where the density function is used to compute scores.
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match with what a human judges as important). Note that the SFE methods have

no information with which to judge whether the anomaly detector is bad or not,

so making the above assumption is the only reasonable assumption to make with-

out further information. Addressing the mismatch between an anomaly detector

and the semantically interesting anomalies is a fundamental problem on its own

(presumably requiring some form of feedback from the analyst).

We now present the formulation of the SFE objective function and an exact

method based on branch-and-bound search along with our two main classes of

greedy SFE methods which we refer to as marginal methods and dropout methods.

3.5.1 SFE Objective Function

We model the SFE objective function from the perspective of an analyst. In

particular, we view the analyst as a Bayesian classifier that assumes normal points

are generated according to f and that anomalies have a uniform distribution u over

the support of the feature space, which is a reasonable assumption in the absence

of prior knowledge about the anomaly distribution. Given a point x, an SFE E,

and a number of revealed features i, such an analyst would make the decision of

whether x is an anomaly or not by comparing the likelihood ratio
f(xEi )

u(xEi )
to some

threshold. Since u is assumed to be uniform, this is equivalent to comparing the

joint marginal f(xEi) to a threshold. Intuitively this means that if our goal is to

cause the analyst to quickly decide that x is an anomaly, then we should choose

an E that yields small values of f(xEi), particularly for small i.

In order to formalize the above intuition into an objective function, we first

need to more precisely specify the thresholds used in the above analyst model. It

is important to note that any choice of threshold on f(xEi) should depend on i,

since larger values of i tend to lead to smaller density values. For this purpose, we

introduce the threshold function τi(E,α), where E is an SFE, i is an SFE index,

and 0 < α < 1 is a percentile parameter. In particular, τi(E,α) is the α-percentile

density value in the set {f(xEi) : x ∈ D}, where D is the set of all data instances.

That is, a fraction α of the data points will have marginal density f(xEi) less than

τi(E,α). If α is equal to the expected rate of anomalies, then this is a natural way

to model the analyst detection threshold. In practice, we do not know the value of

α and thus our approach below will assume a prior p(α), which in turn implies a
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prior over thresholds given by τi(E,α). In our implementation, we use a discrete

distribution over α that assigns non-zero probability to reasonably small values.

Given the above threshold function, we can now formulate our SFE objective

function. For this purpose, given an instance x, SFE E, and percentile α, we define

the Smallest Prefix (SP) of E as the smallest number i of top features in E that

would cause the analyst to detect x using threshold τi(E,α), i.e.

SP(x,E, α) = min{i : f(xEi) < τi(E,α)} (3.1)

Note that if no value of i satisfies the inequality, then we define SP(x,E, α) = n.

Intuitively, SP(x,E, α) is the amount of the modeled analyst’s effort (i.e. the

number of features) required to detect x as an outlier when using SFE E and

assuming threshold corresponding to α. Since we do not know the true value of

α, our final objective is the expected value of SP, denoted by ESP, with respect to

p(α), that is,

ESP(x,E) =
∑
α

SP(x,E, α)p(α) (3.2)

recalling that we are assuming p(α) is a discrete distribution. Given this objective

function, we can now specify the SFE optimization problem for a given instance

x, which is to compute the SFE with minimal ESP:

argmin
E

ESP(x,E) (3.3)

To understand the computational complexity of this problem, consider the associ-

ated decision problem SFE-Decide.

SFE-Decide: Does there exist an SFE E that satisfies
∑
α

SP(x,E, α)p(α) ≤ t

This problem turns out to be computationally hard.

Theorem 3.5.1. SFE-Decide is NP-hard.

The proof is in Appendix A.1. This hardness result motivates us to consider

two optimization approaches described below. First, we consider greedy algorithms

that are guaranteed to be efficient, but without any guarantees with respect to
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optimality. Second, we design an anytime branch and bound search, which is

guaranteed to find optimal solutions if run long enough and also provides bounds

on the sub-optimality of the solution returned at any time. Our experiments will

compare both types of approaches.

3.5.2 Greedy Algorithms

In this section we first describe two greedy approaches and then an optimal al-

gorithm based on branch and bound search to solve the optimization problem of

Equation 3.3.

3.5.2.1 Marginal Methods

A natural greedy approach to optimizing the above objective is to greedily con-

struct an E that attempts to minimize f(xEi) as a function of i as quickly as pos-

sible. This leads to our first SFE method, called sequential marginal (SeqMarg).

The SeqMarg method adds one feature to the k-length SFE E = (e1, . . . , ek) at

a time, at each step adding the feature that minimizes the joint marginal density

with the previously-selected features. This gives a nice way to stop if the analyst

can decide whether x is anomaly just from the first k features, otherwise we need

to keep adding a feature at each iteration. More formally, SeqMarg computes the

following explanation:

SeqMarg: ei = arg min
j∈Ei−1

f(xEi−1
, xj)

where S is the complement of set S. SeqMarg requires O(kn) joint marginal

computations in order to compute an explanation of length k. Note that due to

the inherent greediness of SeqMarg, xEi may not necessarily be the optimal set of

i features for minimizing f . Rather, if the goal were to optimize for a particular

value of i, we would need to consider all O(ni) feature subsets of size i. However,

our problem formulation does not provide us with a target value of i, and thus

SeqMarg offers a more tractable approach that focuses on minimizing f as quickly

as possible in a greedy manner.

It is worth noting that if our objective function were submodular, then SeqMarg
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would provide an approximation guarantee [Krause and Golovin, 2014]. However,

our objective function f(xE) is not a submodular function of the set E. Intuitively,

a submodular function is one that exhibits diminishing returns, meaning that if

E ′ ⊆ E then adding an item to E ′ will improve the objective at least as much as

adding the item to E. Unless we place strict restrictions on f this is not the case

in general, due to interactions between features. For example, consider a density

f for which the feature values of xi and xj are very rare when considered together,

but common individually. If we let E ′ = {k} and E = {k, i}, then it is easy to

design f so that adding j to E results in a larger drop in the marginal f value

than adding j to E ′. Because, adding j to E would cause more rarity than adding

j to E ′ even though E ′ is a subset of E. Indeed using this type of construction it

is easy to construct examples where SeqMarg can be arbitrarily far from optimal.

However, in practice we find that it tends to work very well across a wide range of

problems.

In addition to SeqMarg we also consider a computationally cheaper alternative,

called independent marginal (IndMarg), which only requires the computation of

individual marginals f(xi). This approach simply selects an explanation E for

x by sorting the features in increasing order of f(xi). This only requires O(n)

marginal computations for computing an explanation of any length. IndMarg offers

a computationally cheaper alternative to SeqMarg, but fails to capture joint feature

interactions. For example, SeqMarg will select ei in a way that optimizes the

joint value when combined with previous features Ei−1. Instead, IndMarg ignores

interactions with previously-selected features. Thus, IndMarg serves as a baseline

for understanding the importance of accounting for joint feature interactions when

computing explanations.

3.5.2.2 Dropout Methods

The next two methods are inspired by the work of Robnik-Sikonja and Kononenko

[Robnik-Sikonja and Kononenko, 2008] on computing feature-relevance explana-

tions for supervised classifiers. In their work, the relevance score for a feature is

the difference between the classification score when the feature is provided to the

classifier and the classification when the feature is omitted (“dropped out”). The

analogous approach for anomaly detection is to score features according to the
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change in the density value when the feature is included and when the feature is

not included, or marginalized out. This yields the first dropout method, referred

to as independent dropout (IndDO): given a point x, each feature is assigned a

score of f(x − xi) − f(x), where we abuse notation and denote the removal of xi
from x by x − xi. Intuitively, features with larger scores are ones that make the

point appear most normal when removed. The SFE E is then obtained by sorting

features in decreasing order of score.

We can also define a sequential version of dropout, by following the same recipe

we considered for IndMarg versus SeqMarg. Let the sequential dropout (SeqDO)

be defined as follows:

SeqDO: ei = arg max
j∈E1:i−1

f(xEi − xj)

This approach requires the same number of marginal computations as SeqMarg.

This algorithm can be viewed as a dual of SeqMarg in that it measures the con-

tribution of feature sets according to how much more normal a point looks after

their removal, whereas SeqMarg measures how abnormal a point looks with only

those features included.

3.5.3 Branch and Bound Search

We now develop an optimal algorithm for optimizing ESP based on branch and

bound search. This algorithm will search through the exponentially large space of

SFEs, while attempting to soundly prune as much of the space from consideration

as possible. Ideally, the pruning will result in finding the optimal SFE very quickly,

though in the worst case the procedure may need to enumerate an exponentially

large set of SFEs. This worst case behavior is unavoidable under standard complex-

ity assumptions due to the NP-hardness of the optimization problem. Importantly,

our branch and bound procedure can be run in an “anytime” mode, where it can

be terminated at any point to return the best solution found so far.

The branch and bound search operates over a rooted tree, where a node at

depth i is labeled by a length i feature sequence Ei, which represents a partial SFE.

Since there will be a one-to-one correspondence between tree nodes and feature

subsequences, we will abuse notation and refer to nodes by the corresponding
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Algorithm 1 Branch and Bound Search

Input: x ∈ Rd: input instance, d: dimension, MAX: maximum number of nodes
to explore
Output: SFE for x

root := CreateEmptyNode(x) // Creates node with empty feature list.
Q.Insert(root)
BestNode := root
NodesExplored := 0
while Q.NotEmpty() AND NodesExplored < MAX do

NodesExplored := NodesExplored+ 1
node := Q.GetSmallestUpperBoundNode() // Expand node with best upper
bound.
if node.LB < bestNode.UB then

for f ∈ (1 : d) AND f /∈ node.RankedFeatureList do
child := copy(node)
child.AppendFeature(f)
child.UpdateBounds()
if BestNode.UB > child.UB then

BestNode := child
end
Q.Insert(child)

end

end

end
return BestNode.RankedFeatureList

sequences. The root of the tree is the null sequence E0 and the leaves of the tree

are complete SFEs (length n sequences). The children of a node Ei at depth i are

all subsequences of length i + 1 that extend Ei by one feature that is not already

in Ei. Based on this search space definition, the descendant leaves of a node Ei,

denoted by l(Ei), are all SFEs that have Ei as a prefix.

The key idea of branch and bound search is to view each node Ei as representing

the set of possible solutions l(Ei) and to compute upper and lower bounds on the

objective value for those possible solutions. In particular, the upper (lower) bound
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computed for a node Ei, denoted by U(Ei) (L(Ei)), are values that bound the ESP

of any SFE in l(Ei) from above (below). Given these bounds, we can prune away

a node Ei and all of its descendants if its lower bound L(Ei) is greater than the

upper bound U(E ′) of some other node E ′ already considered during the search.

This is a sound pruning strategy since it must be the case that l(E ′) contains an

SFE whose ESP is at least as good as the best SFE in l(Ei) (recall that smaller

ESP is better). Below we specify the search strategy for expanding nodes, followed

by a description of the lower and upper bound computations. Pseudo code for the

overall search is given in Algorithm 1.

Search Strategy. The search iteratively expands a set of fringe nodes, which

is initialized to the single root node E0 (null sequence). This set of nodes is main-

tained in a priority queue in Algorithm 1. At any point in the search, we maintain

the upper bound for each fringe node as well as the best (smallest) upper bound U∗

discovered so far during the search. Each iteration begins by selecting the fringe

node E with the smallest upper bound and then computing the corresponding

lower bound L(E). If L(E) ≥ U∗ then we remove/prune E from the set of fringe

nodes, which effectively prunes all SFEs in l(E) from consideration. If L(E) < U∗

then it is possible that an SFE in l(E) is optimal and we expand E by adding

all of its children to the set of fringe nodes and removing E. The upper bound

for each newly added child is computed and the iteration proceeds. Importantly,

as described below, our upper bound computation produces an SFE that achieves

the upper bound value. Thus, at any point our search also keeps track of the best

such SFE discovered so far.

The algorithm terminates and returns the best SFE found so far when a spec-

ified limit on the number of expanded nodes is reached. The algorithm will also

terminate if it finds an SFE S whose ESP value is at least as good as the lower

bound of any fringe node. In that case, S is guaranteed to be an optimal SFE.

The algorithm will always terminate in finite time since there are a finite number

of SFEs and each iteration expands a new node of the search tree.

Upper Bound Computation. We compute the upper bound for a node

Ei by running the greedy sequential marginal algorithm (Section 3.5.2.1) starting

with Ei in order to select the remaining features of a complete SFE. The ESP

(Equation 3.2) computed for the resulting SFE is taken to be the upper bound

since the optimal SFE under Ei will be no worse (smaller ESPs are better).
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Lower Bound Computation. The lower bound for node Ei must bound

the ESP of any SFE in the set l(Ei). Our first step to such a bound is based on

expanding the definition of ESP according to (3.2) and interchanging the order of

minimization over SFEs and summation/expectation over α values.

min
E∈l(Ei)

ESP(x,E) = min
E∈l(Ei)

∑
α

SP(x,E, α)p(α) ≥
∑
α

min
Eα∈l(Ei)

SP(x,Eα, α)p(α)

(3.4)

The inequality follows due to the fact that the right-hand side of the inequality

minimizes the SP for each value of α, rather than constraining the SFE to be the

same for each value of α as in the original optimization problem. Unfortunately,

finding the optimal Eα for each term of the right-hand side is still computationally

intractable due to the need to enumerate over SFEs in l(Ei). Thus, we instead

compute an efficiently computable lower bound for each such term by restricting

our attention to only the feature sequences in Ei. In particular, consider a single

term

tα = min
Eα∈l(Ei)

SP(x,Eα, α) (3.5)

noting that Ei is a prefix of all SFEs under consideration. If tα = j ≤ i then there

is a j ≤ i such that f(xEj) < τj(Ei, α) and we can easily compute this value by

considering each j ≤ i. If, on the other hand, tα > i then there will not be any

j ≤ i such that f(xEj) < τj(E,α), which we can easily test. In this case, we can

lower bound the value of tα by i. Putting this all together, we use the following

lower bound on each term:

tα ≥ t̂α = min({j : j ≤ i, f(xEj) < τj(E,α)} ∪ {i}) (3.6)

and we compute the overall lower bound as
∑

α t̂αp(α).

It is important to note that our overall search procedure is guaranteed to do no

worse than SeqMarg. This is because, the upper bound computation for the root

node exactly corresponds to running SeqMarg starting from the empty sequence.

Thus, the best SFE maintained by the search will always be at least as good as

that produced by SeqMarg.
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3.6 Framework for Evaluating Explanations

There are at least two challenges involved in evaluating anomaly-explanation meth-

ods. First, compared to supervised learning, the area of anomaly detection has

many fewer established benchmark data sets, particularly benchmarks based on

real-world data. Second, given a benchmark data set, it is not immediately clear

how to quantitatively evaluate explanations, since the benchmarks do not come

with either ground truth explanations or analysts.

Here we describe an evaluation framework that addresses both issues. We

address the first issue by drawing on recent work on constructing large numbers of

anomaly detection benchmarks based on real-world data. We address the second

issue by using supervised learning to construct a simulated analyst that can be

applied to quantitatively evaluate our explanations in terms of MFP. Below we

expand on both of these points.

3.6.1 Anomaly Detection Benchmarks

Recent work [Emmott et al., 2013] described a methodology for systematically cre-

ating anomaly detection benchmarks from supervised learning benchmarks (either

classification or regression). Given the huge number of real-world supervised learn-

ing benchmarks, this allows for a correspondingly huge number and diverse set of

anomaly detection benchmarks. Further, these benchmarks can be created to have

controllable and measurable properties, such as anomaly frequency and “clustered-

ness” of the normal and anomalous points. We briefly sketch the main idea. Given

a supervised classification data set, called the mother set, the approach selects one

or more of the classes to represent the anomaly class, with different choices giving

rise to different properties of the anomaly class. The union of the other classes

represents the normal class. Individual anomaly detection benchmarks are then

created by sampling the normal and anomaly points at specified proportions.

Table 3.1 gives a summary of the benchmarks from Emmott et al.[2013] used in

our experiments. For example, the UCI data set shuttle was used as a mother set

to create 1600 distinct anomaly detection benchmarks. The number of points in

the shuttle benchmarks range from 3570 to 9847. The number of anomalies ranges

from 8 to 984.
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Figure 3.2: Analyst Certainty Curves. These are example curves generated using
our simulated analyst on anomalies from the Abalone benchmark using SFEs pro-
duced by SeqMarg. The x-axis shows the index of the feature revealed at each step
and the y-axis shows the analyst certainty about the anomalies being normal. The
leftmost curve shows an example of where the analyst gradually becomes certain
that the point is anomalous, while the middle curve shows more rapidly growing
certainty. The rightmost curve is an example of where the analyst is certain of the
anomaly after the first feature is revealed and remains certain.

3.6.2 Simulated Analyst

We consider modeling an analyst as a conditional distribution of the normal class

given a subset of features from a data point. More formally we model the analyst

as a function A(x, S) = P (normal | xS), which returns the probability that point x

is normal considering only the features specified by the set S. We describe how we

obtain this function in our experiments below. Given this function, a point x, and

an SFE E for x, we can generate an analyst certainty curve that plots the analyst’s

certainty after revealing i features, that is, A(x,Ei) versus i. Figure 3.2 shows an

example of three analyst curves from our experiments using our simulated analysts

on a benchmark computed from the UCI Abalone dataset. Each curve corresponds

to a different anomaly in the data set using explanations computed by SeqMarg.

We see that the different anomalies lead to different rates at which the analyst

becomes certain of the anomaly, that is, certain that the point is not normal.

Recall that our proposed quality metric MFP(x, a, E) measures the number of

features that must be revealed to analyst a according to SFE E in order for a to

detect an anomaly x. Evaluating this metric requires that we define the conditions

under which the analyst detects x. We model this by associating an analyst with a

detection threshold τ ∈ [0, 0.5] and saying that a detection occurs if A(x,Ei) ≤ τ ,



43

that is, the probability of normality becomes small enough. We will denote this

analyst by a(τ). Given an a(τ) we can then compute the MFP for any anomaly

point by recording the number of features required for the analyst certainty curve

to first drop below τ .

Of course, there is no a priori basis for selecting a value of τ . Thus, in our

experiments, we consider a discrete distribution over values for τ , P (τ), which

models a range of reasonable thresholds. Given this distribution, we report the

expected MFP—the expected value of MFP(x, a(τ), E)—as the quantitative mea-

sure of SFE E for anomaly x. In our experiments we define P (τ) to be uniform

over the values 0.1, 0.2, and 0.3, noting that our results are consistent across a

variety of reasonable choices for this distribution.

It remains to specify how we obtain the analyst function A(x, S). Since our

anomaly detection benchmarks are each derived from a mother classification data

set [Emmott et al., 2013], we can construct a training set over those points for the

anomaly and normal classes. Basically, a mother training set is a conversion from

some well known classification and regression datasets by following some reason-

able criteria described in [Emmott et al., 2013]. An anomaly detection benchmark

is then created by subsampling instances that satisfy some criteria such as diffi-

culty level, anomaly rate etc. Hence, the mother training set actually contains

all the information for that particular dataset. Given this training set, one ap-

proach to obtaining the analyst would be to learn a generative model, or joint

distribution P (normal, x), which could be used to compute A(x, S) by marginal-

izing out features not included in s. However, such generative models tend to be

much less accurate in practice compared to discriminative models. On the other

hand, learning a discriminative model P (normal | x) does not directly support

computing the probability for arbitrary subsets of x as we require. While heuris-

tics have been proposed for this purpose (e.g. Robnik-Sikonja and Kononenko

[Robnik-Sikonja and Kononenko, 2008]) we have found them to be unreliable when

applied widely. Thus, in this work we follow a brute-force approach. We simply

pre-learn an individual discriminative model for each possible subset of features

up to a maximum size k. Evaluating A(x, S) then simply requires evaluating the

model associated with the subset S.

When the number of features or number of data points is very large, it may not

be possible to pre-learn all possible subsets. In such cases, one option is to learn
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Table 3.1: Summary of the benchmark datasets

Mother Set
Original
Problem

Type

# of
Fea-
tures

# of
Bench-
marks

# of Points
per

Benchmark
(range)

# of
Anomalies

per
Benchmark

(range)

magic.gamma Binary 10 1600 600 - 6180 5 - 618
skin Binary 3 1200 10 - 9323 1 - 932

shuttle Multiclass 9 1600 3570 - 9847 8 - 984
yeast Multiclass 8 1600 70 - 1000 1 - 97

abalone Regression 7 1600 580 - 2095 1 - 209
concrete Regression 8 1200 190 - 1000 1 - 51
landsat Multiclass 36 1600 561 - 5102 4 - 510
particle Binary 50 400 371 - 8563 7 - 857

and cache models on the fly as they are needed during evaluation (each model

would be learned only once). We used this approach for the KDD-Cup results

reported in our experiments.

In all of our experiments, we use the Regularized Random Forests (RRFs)

[Deng, 2013] as the classifier for the analyst model. The RRF model was selected

for two primary reasons. First, RRFs are well known to provide high accuracies

that are competitive with the state of the art across a wide range of classification

problems [Fernández-Delgado et al., 2014]. Second, RRFs are relatively efficient

to train, which is important to our study, since we must train one RRF for each

possible subset of features (up to some maximum size). We trained RRFs composed

of 500 trees using 10-fold cross-validation in order to tune the RRF regularization

parameters.

It is worth noting that our evaluation framework is potentially sensitive to the

choice of analyst model, since different models will have different biases. It was

beyond the practical scope of this first study to replicate all experiments using a

qualitatively different model.
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3.7 Empirical Evaluation

We now present our empirical evaluation on anomaly detection benchmarks from

Emmott et al. [Emmott et al., 2013] and the commonly used KDDCup anomaly

detection benchmark.

3.7.1 Anomaly Detector

For all of our experiments, we have chosen to use the Ensemble Gaussian Mixture

Model (EGMM) as the anomaly detector. This detector was first described in

Emmott et al. [Emmott et al., 2013] and was shown to be a competitive density-

based approach across a wide range of benchmarks. EGMM is based on learning

a density function f(x) represented as an ensemble of Gaussian mixture models

(GMMs). The approach independently learns M GMM models by training each

one using the Expectation-Maximization (EM) procedure on bootstrap replicates

of the data set. Then it discards the low-likelihood GMMs (if any) and retains

others based on a pre-specified threshold. The number of components of the GMMs

is varied across the ensemble. In our experiments, the ensembles included 45

GMMs, 15 each using 3, 4, and 5 components. The final EGMM density f(x) is

simply a uniform mixture of the densities of the retained GMMs. The EGMM

approach addresses at least two pitfalls of using single GMM models. First, EM

training can sometimes produce poor models due to bad local optima. Second,

it is difficult to select the best number of components to use for a single model.

EGMM gains robustness by performing model averaging over the variations.

One advantage of using the EGMM model is that it is straightforward to de-

rive closed forms for the marginal density computations required by our expla-

nation methods. In particular, the overall EGMM density f can be viewed as a

single large GMM model containing a mixture of all components across the ensem-

ble. Since individual Gaussians have simple closed forms for marginal densities

[Bishop et al., 2006], we can easily obtain closed forms for the mixture. It is worth

noting that closed forms can also be derived for EGMM marginals when the data

points are transformed by linear projections to reduce dimensionality (e.g. princi-

ple component analysis).

Another point to note is that we didn’t consider discrete-valued features di-

rectly, primarily because we used anomaly detectors that expected numeric fea-
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Figure 3.3: The bars show the Expected Smallest Prefix (ESP) achieved by differ-
ent methods averaged across top 10% highly ranked ground truth anomalies in all
the benchmarks. 95% confidence intervals are also shown.

tures. However, our approaches are only dependent on the marginal distributions

of the original density f . If f is a joint distribution over both continuous and dis-

crete variables and we can get any marginal of f on demand, our methods apply

directly without modification.

3.7.2 Empirical Comparison of Greedy vs. BaB

Before presenting our full evaluation, we first compare the performance of greedy

versus BaB (Branch and Bound from Section 3.5) with respect to optimizing ESP

(Equation 3.3). For this experiment, we need to specify two parameters: the

number of nodes to expand for BaB and a distribution over percentile values α

(1 to 100) used to define ESP. We assign the number of nodes to expand as 100

(hence calling the method BaB.100), and choose an uniform prior probability over

the first 10 values of α and others as 0, i.e.,

P (α) =

{
1/10 if 1 ≤ α ≤ 10

0 otherwise
.

The idea is to put higher emphasis on the low-percentile values as they should

convey more accurate signals than others. Finally, we compute the best ESP

(BaB.100) and the optimal ESP (BaB.complete) for each of the highly-ranked

anomaly points and average across the datasets respectively.
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Similarly, we compute the ESP of equation 3.2 using the SFEs obtained from

the greedy methods (SeqMarg, IndMarg SeqDrop and IndDrop) of Section 3.5.2.1.

The average of these ESPs are then plotted along with the ESPs of the BaB

methods in Figure 3.3. We first observe that BaB.complete and BaB.100 achieve

nearly identical results. This shows that a relatively small amount of search is

needed by our BaB procedure to achieve nearly optimal ESP. Thus, in our full

evaluation (Section 3.7.3) we will focus on the computationally cheaper BaB.100

as the representative BaB method. Second, we observe that the greedy sequential

Marginal (SeqMarg) method achieved very close ESP to the BaB methods with

the exception of the Yeast and Shuttle benchmarks. The other greedy methods

more frequently perform significantly worse than the BaB methods. This shows

that SeqMarg could be expected to be a computationally-efficient and effective

alternative to BaB for optimizing ESP.

3.7.3 Evaluation on Benchmark Data Sets

We run our evaluation on anomaly detection benchmarks from Emmott et al.

[Emmott et al., 2013], derived from seven UCI mother sets. A summary of the

benchmarks are given in Table 3.1. There are over 10,000 benchmarks in total,

which contain a number of points ranging from 10 to 9847 and a number of anoma-

lies ranging from 1 to 984. An EGMM model was fit for each of the benchmarks to

serve as the anomaly detector, and RRF models were trained for each mother set

on all possible feature subsets. For this first part of our evaluation, we have chosen

to focus on benchmarks with relatively small dimensionality in order to allow for

a large scale study, which requires training large numbers of EGMM models (over

10,000) and RRF analyst models. All data from these experiments, including the

analysts’ models, will be made publicly available.

We evaluated seven methods for computing SFEs. These included the five

methods from Section 3.5: SeqMarg, IndMarg, SeqDO, IndDO and BaB.100 (branch-

and-bound was restricted to 100 nodes of exploration). In addition, we evaluated

a random explanation method. In the random case, we report the average perfor-

mance across 100 randomly generated SFEs. Finally, in order to provide a lower

bound on attainable performance (lower MFP is better) we consider an optimal-

oracle method, OptOracle. This method is allowed access to the simulated analyst
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and for each number of features i computes the optimal feature subset of size i.

More formally, for each value of i, OptOracle finds the feature subset Si that mini-

mizes the analyst’s conditional probability P (normal | xSi). The MFP achieved by

OptOracle for an anomaly x, given a particular analyst threshold τ (recall Section

3.6), is the minimum value of i such that P (normal | xSi) < τ . Note that OptOr-

acle is not constrained to produce “sequential explanations”—rather, OptOracle

can produce an Si that does not necessarily contain Si−1. This gives OptOracle an

additional advantage compared to the other methods which are constrained to pro-

duce SFEs. Clearly, OptOracle represents an optimistic bound on the performance

of any SFE method that is evaluated with respect to the simulated analyst.

For each of the 10,000 benchmarks, we used the corresponding EGMM model to

rank the points. For the true anomaly points ranked in the top 10%, we computed

SFEs using each of the six methods. This choice is an attempt to model the fact

that, in actual operation, only highly ranked anomalies will be presented to the ex-

pert. Note that while developing and evaluating explanation methods that target

false positives is certainly an interesting direction, it is a large enough problem to

warrant its own entire study. For that problem, the objective is presumably one of

exoneration where the goal for the explanation system is to accurately determine

when revealing additional features of an SFE is unlikely to raise further suspicion

according to its model. This requires new developments and new approaches for

evaluation. Finally, the expected MFP was computed for each SFE using a dis-

tribution over analyst thresholds that was uniform over the values 0.1, 0.2, and

0.3. For each mother set, we then report the average MFP across the anomalies

derived from that mother set. These average MFPs are shown in Figure 3.4 along

with 95% confidence intervals.

We first note that our observations below are not sensitive to the choice of

what percentage of the top anomalies to focus on. While these results focus on

the top 10%, we have also compiled results for other percentage points including

using all anomalies. The main observations are qualitatively similar across all of

these choices.

Comparison to Random and OptOracle. We observe in Figure 3.4 that

all of the SFE methods outperform random explanations and often do so by a large

margin. Comparing to OptOracle we see that, for three benchmarks—concrete,

yeast, and wine—the lower bound provided by OptOracle is significantly better
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Figure 3.4: Performance of explanation methods on benchmarks. Each group of
bars shows the performance of the six methods on benchmarks derived from a
single mother set. The bars show the expected MFP averaged across anomalies in
benchmarks for the corresponding mother set. 95% confidence intervals are also
shown.
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Figure 3.5: Performance of explanation methods on benchmarks when using an
oracle anomaly detector. Each group of bars shows the performance of the six
methods on benchmarks derived from a single mother set. The bars show the
expected MFP averaged across anomalies in benchmarks for the corresponding
mother set. 95% confidence intervals are also shown.

than our best SFE method. This gap could be due to either: 1) suboptimal

SFE computations, 2) a poor match between the anomaly detector’s notion of

outlier versus the analyst’s notion of anomaly, or 3) the fact that OptOracle is

not constrained to output sequential explanations. We will investigate this further
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below (Section 3.7.4).

For the remaining four mother sets, we see that the marginal methods are

quite close to the lower bound of OptOracle, though there is still some room for

improvement. Finally, it is worth noting that OptOracle is able to achieve MFPs

of close to 1 for most of the mother sets. Thus, on average, for these data sets, a

single feature is sufficient to allow for correct analyst detections.

Comparison to Branch and Bound. We now compare the greedy methods

to BaB.100, which as described above attempts to optimize ESP as a surrogate for

the true-but-unknown MFP objective. Figure 3.4 shows the performance of these

methods and interestingly we see that the best greedy method significantly outper-

forms BaB.100 on the Yeast and Shuttle benchmarks. A potential reason for this is

due to a mismatch between the ranking of points by the anomaly detector and the

ranking of points by the simulated analysts. That is, there is a mismatch between

statistical outliers and semantic anomalies. Since BaB.100 works harder than the

greedy methods to optimize the ESP objective, the impact of this mismatch can

be amplified. This hypothesis is supported by Figure 3.3 where we see that Yeast

and Shuttle are the two benchmarks where BaB.100 has a significantly better ESP

than the greedy methods. We investigate the issue further in Section 3.7.4.

Independent versus Sequential. It is reasonable to expect that the sequen-

tial version of the marginal and dropout methods will outperform the independent

versions. This is because the sequential versions attempt to account more ag-

gressively for feature interaction when computing SFEs, which requires additional

computation time. However, we see that overall there is very little difference in

performance between the independent and sequential methods. That is, SeqMarg

and IndMarg (as well as SeqDO and IndDO) achieve nearly identical performance.

The only exception is in magic.gamma where there is a small—but statistically

significant—advantage (according to a paired t-test) of SeqMarg over IndMarg.

One possible explanation for these results is that feature interactions are not crit-

ical in these domains for detecting anomalies. This explanation is supported by

the fact that OptOracle is able to achieve average MFPs close to one.

Marginal versus Dropout. Recall that the marginal and dropout methods

are dual approaches. Marginal evaluates a set of features in terms of how abnor-

mal those features alone make a point appear, while dropout evaluates a set by

the increase in normality score when the features are removed. We see that overall
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the marginal methods are never significantly worse than dropout and significantly

better on abalone, magic.gamma, shuttle, and skin. The difference is par-

ticularly large on shuttle, where the marginal methods are close to OptOracle

and the dropout methods are closer to random.

One possible explanation is that we have observed that often dropout will

produce a “weaker signal” compared to marginal when making early decisions.

For example, when considering single features, the differences in scores produced

by dropout for those features are often much smaller than the differences produced

by marginal. This can make dropout less robust for early decisions, which are the

most important ones for achieving small MFP scores. Recall that the dropout

method was inspired by prior work on explanations for supervised learning. The

results here suggest that it is worth investigating adaptations of marginal to the

supervised setting.

3.7.4 Comparing Methods with Oracle Detectors

Since the SFE methods make their decisions based on the anomaly detector’s den-

sity function f , the results above reflect both the SFE methods and the quality

of the detector. Here we attempt to factor out the performance of the SFE meth-

ods themselves by supplying the methods with an oracle anomaly detector. To

do this we simply replace the use of f with the simulated analyst’s conditional

probability function P (normal | xS), which we can compute for any feature subset

S. For example, the first feature selected by SeqMarg is the xi that minimizes

P (normal | xi). Note that this is also the first feature that would be selected by

OptOracle. Unlike OptOracle, however, SeqMarg is sequentially constrained and

will select the second feature as the one that works best when combined with the

first selected feature.

Figure 3.5 shows results for all methods using the oracle detectors. We use a ‘*’

to indicate that a method is using an oracle detector, for example, SeqMarg* is

the oracle version of SeqMarg.

Comparison to OptOracle. The primary observation is that SeqMarg* per-

forms nearly identically to OptOracle in all but one domain. Any difference be-

tween SeqMarg* and OptOracle would reflect the loss in performance due to requir-

ing sequential explanations, which is required for OptOracle, and/or the greedy
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optimization. For these data sets, there is little to no loss. This is good news, since

the motivation for considering sequential explanations is to reduce the analyst’s

effort. In particular, the sequential constraint means that the analyst is shown an

incrementally growing set of information. Rather, without the constraint, OptOr-

acle could potentially show completely different sets of features from step to step,

which is arguably less desirable from a usability perspective.

Comparison to Branch and Bound. The performance of BaB.100 is signif-

icantly improved in comparison with greedy methods when using the oracle detec-

tors. This provides evidence that the primary reason for the poor performances of

BaB.100 above was the mismatch between the anomaly detector ranking of points

and that of the analyst. However, we still see that BaB.100 is usually slightly out-

performed by the best greedy method SeqMarg and significantly outperformed on

Yeast. A likely reason for this is that BaB.100 is optimizing a surrogate objective

ESP, rather than the true objective MFP. When there is a disparity between these

objectives, more aggressive optimization can be counter productive. Note that in

Section 3.7.2, we did validate that BaB.100 does optimize its surrogate objective

effectively compared to the greedy methods.

Independent versus Sequential. Here, we see that SeqMarg* is often out-

performing IndMarg* and sometimes by significant amounts. This is in contrast to

the results obtained when using EGMM as the anomaly detector. This indicates

that reasoning about feature interactions, as done by SeqMarg*, can be important

with higher-quality anomaly detection models. This leaves open the question of

whether we will be able to observe this advantage when using non-oracle anomaly

detection models on realistic benchmarks.

Dropout versus Marginal. The marginal methods show consistently better

performance when using oracle detectors. The performance gap is quite large in

several of the benchmarks. This provides evidence that the marginal approach is

generally a better way of computing SFEs. Again, we hypothesize that this is due

to the “weak signal” during early decisions observed for the dropout method.

3.7.5 Evaluation on high dimensional Datasets

We now consider the effectiveness of the proposed methods on larger-dimensional

datasets. For large dimensions, computing the analyst models by learning one
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Figure 3.6: Performance of different explanation methods on some high dimen-
sional benchmark datasets. 95% confidence intervals are also shown.

model for each feature subset (as done above) is computationally prohibitive due

to the exponential number of feature subsets. However, most such subsets are not

useful for evaluation especially those that contain many features since, in practice,

it is rare for anomalous behavior to be a result of large numbers of interacting

features. In addition, larger subsets are not easy to consume and process by

human analysts. Hence, We focus on evaluating SFEs involving only the top

k ≤ 10 features instead of all d features.

In order to examine the effects of a large number of dimensions, we choose

three datasets: landsat, particle and KDDcup99 having dimensions 36, 55,

and 45, respectively. Even after imposing the constraint of SFE computation for

k ≤ 10 features, the restricted BaB method (BaB.100) took hours to finish and

sometimes exceeded the memory limit. This is because at each node expansion

during branch and bound search we need to calculate the upper bound of the node.

This requires marginalizing the model which is costly due to the large number of

parameters and having to compute the density for all the instances. Hence, we

limit the execution of this method to 15 minutes (hence calling it BaB.15) and use

the best SFE found after the time limit is reached.

For the KDDcup99 intrusion detection benchmark [Hettich and Bay, 1999],
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we use k = 10 and consider a subset of the data containing instances involving http

service only. The resulting benchmark contains approximately 620K points with

approximately 4K anomalous points representing network intrusions. We again

employed EGMM as the anomaly detector. It was infeasible to train a simulated

analyst on all feature subsets so we followed the adaptive approach described in

Section 3.6 where only the subset of models required during the evaluation process

was learned and cached. Overall this resulted in approximately 7.5K RFF models

being trained. In this domain, the EGMM model was quite effective and ranked

all anomalies very close to the top of the ranked list. Thus, we evaluate on all

anomalies in this domain.

The results for KDDcup99 are shown in Figure 3.6. It is clear that the

marginal methods are significantly better than the dropout methods. In partic-

ular, both SeqMarg and IndMarg achieve an average MFP close to one, which is

the smallest possible. This indicates that the combination of EGMM and marginal

explanations is very effective in this domain. In particular, the simulated analyst

only needed to be shown a single feature on average in order to correctly detect

the anomalies.

For the landsat and particle datasets we use k = 6 and evaluate with

respect to anomalies ranked in the top 10%. The result is shown in Figure 3.6.

The IndDO and SeqDO are similar for both of the datasets. SeqMarg is better

than IndMarg in both cases and also better than IndDO and SeqDO. SeqMarg

performs equal to or better than the BaB method. For the BaB method, 31%

of the anomaly points from landsat and 70% of the points from particle are

solved for the optimal ESP value within the 15-minute time limit. Although the

majority of the anomaly points in the particle dataset reached optimal solution,

the performance is slightly worse than sequential marginal. This could be due to

the reason already discussed in Section 3.7.3. Overall, the relative performance

of the dropout and marginal methods are very similar to the relative performance

observed earlier. The marginal methods tend to outperform the dropout methods.

We again hypothesize that the much weaker performance of the dropout meth-

ods is due to the “weak signal” they provide for early decisions. This problem is

only amplified in the context of larger numbers of features as is the case for the

KDDCup data.
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3.8 Experiments on Real World Network Data

In this section we describe experiments performed on some real world network

data [Siddiqui et al., 2019b]. Suppose we have collected some network activity

data for a certain amount of time from M computers within an organization, where

xij ∈ Rn is a set of count-based features representing the activities that occurred

in the ith interval of the jth computer. Let, X = {x11, x12, ..., x1j, ..., xij, ..., xiM} be

the collection of all the activity instances across all the computers. X contains both

the benign (i.e., regular) activity as well as the malicious (i.e., attack) events. We

assume that the time interval is large enough to capture a malicious event within

that period, and if a malicious event is split between two consecutive time intervals,

then one of the intervals should have enough data to capture the malicious activity.

We also assume that the majority of the data consists of benign activity, while the

malicious activity is only a small fraction of the entire dataset. Our goal is to detect

all the time intervals containing the malicious events. We use anomaly detection

over the dataset X to identify the time intervals that are anomalous compared

to all other time intervals. We assume that during an attack the activities of the

victim computer are somewhat different than typical or regular activity.

3.8.1 Data Collection

We collected data from over two millions of computers reporting during a two

week period. To protect the identify of the users, we anonymized the user account

and the computer name. We divided the data from computers into two classes,

servers and clients, based on their operating system. Since servers tend to have

significantly different types of activity than client computers, we filtered them out

to focus the analyst’s time on the majority computer type. For each of these client

computers, we collected network activity containing logon events, RDP and SQL

connections. The anomaly detector Isolation Forest [Liu et al., 2008] consumes

numeric vectors as input. Thus, we chose a window size with a time resolution of

30 minutes and counted the different types of activity that occurred in that interval.

In total, we used 23 count-based features (Table 3.2 [Siddiqui et al., 2019b]) that

gave us a numeric vector of size 23 for each 30 minutes interval, i.e., a total of 672

numeric vectors per computer we calculated over the two weeks of activity. We

then filtered out the vectors that did not have any activity, i.e., all of the values
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Table 3.2: List of Features

SuccessfulLogonRDPPortCount
UnsuccessfulLogonRDPPortCount
RDPOutboundSuccessfulCount
RDPOutboundFailedCount
RDPInboundCount
SuccessfulLogonSQLPortCount
UnsuccessfulLogonSQLPortCount
SQLOutboundSuccessfulCount
SQLOutboundFailedCount
SQLInboundCount
NtlmCount
SuccessfulLogonTypeInteractiveCount
SuccessfulLogonTypeNetworkCount
SuccessfulLogonTypeUnlockCount
SuccessfulLogonTypeRemoteInteractiveCount
SuccessfulLogonTypeOtherCount
UnsuccessfulLogonTypeInteractiveCount
UnsuccessfulLogonTypeNetworkCount
UnsuccessfulLogonTypeUnlockCount
UnsuccessfulLogonTypeRemoteInteractiveCount
UnsuccessfulLogonTypeOtherCount
DistinctSourceIPCount
DistinctDestinationIPCount

were 0. After preprocessing, the final dataset contained approximately 300 million

vectors for the client computers.

3.8.2 Anomaly Detector Setup

To create the Isolation Forest model we trained 500 trees, where each tree is grown

with 10,000 unique instances (vectors), and the tree is grown until each instance

is isolated to its own leaf. One major benefit of the Isolation Forest is that each

tree can be trained independently. We leveraged this and constructed all the trees

in parallel using the Cosmos, which is a distributed MapReduce platform. It took

about 10 minutes in total to train the entire model. We then computed the anomaly

score for each instance using the same distributed environment that allowed us to

compute anomaly scores for different instances in parallel. For all the instances

the scoring process took about 2 hours. We then selected the top 1000 anomalous
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instances and produced the explanation for each. The explanation creation process

took about an hour.

Table 3.3: Explanation examples along with anomaly scores

Anomaly
Score

Top 3 features
Explanation

0.839
UnsuccessfulLogonTypeOtherCount = 40.0 is unusual with score 0.56
SuccessfulLogonTypeNetworkCount = 800.0 is unusual with score 0.70
SuccessfulLogonTypeInteractiveCount = 120.0 is unusual with score 0.77

0.836
SQLOutboundSuccessfulCount = 44.0 is unusual with score 0.54
UnsuccessfulLogonTypeInteractiveCount = 21.0 is unusual with score 0.70
SQLInboundCount = 1568.0 is unusual with score 0.77

0.834
UnsuccessfulLogonTypeOtherCount = 40.0 is unusual with score 0.56
SuccessfulLogonTypeInteractiveCount = 69.0 is unusual with score 0.70
SuccessfulLogonTypeNetworkCount = 547.0 is unusual with score 0.76

1.24
UnsuccessfulLogonTypeNetworkCount = 59.0 is unusual with score 0.54
RDPInboundCount = 368.0 is unusual with score 1.13
DistinctDestinationIPCount = 11.0 is unusual with score 1.17

1.24
UnsuccessfulLogonTypeNetworkCount = 79.0 is unusual with score 0.54
RDPInboundCount = 145.0 is unusual with score 1.13
DistinctDestinationIPCount = 1.0 is unusual with score 1.16

3.8.3 Explanation Results

For each instance, we get the anomaly score from the Isolation Forest along with

the sequential feature explanation computed as described in Section 3.5.2.1. Note

that the Isolation Forest produces a score (Score(x)) instead of density estimate.

So we compute the marginal score for an instance x under a feature subset s as

Score(xs), which is the marginalized score computed by considering the thresh-

old tests involving features only from s across all trees. Basically, the marginal

anomaly score Score(xs) is obtained by traversing branches of all internal tree

nodes whenever the corresponding threshold test on feature F does not belong to

the set s, i.e., F /∈ s. The resultant score is computed recursively by weighting the

left and right subtree scores with the fraction of instances that went to left and

right branches during training. This method of marginalization is very effective

for the Isolation Forest as shown by [Dietterich and Zemicheal, 2018], where the
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authors call the method “proportional distribution”. They considered the set of

features not present in the set s as missing value which allows one to compute an

anomaly score with any arbitrary set of missing features. Finally, a desired length

k explanation E = (e1, e2, ..., ek) can be computed as follows:

ei = argmin
j /∈E1:(i−1)

Score(xE1:(i−1)∪j) (3.7)

Table 3.3 [Siddiqui et al., 2019b] shows some of the example explanations, i.e.,

SFE with length 3. Note that the raw anomaly scores are normalized according

to [Liu et al., 2008] to make higher scores indicating more anomalousness. The

explanations tell the analyst what features were most responsible for the high

anomaly score. Also, we report the individual marginal anomaly score along with

each accumulated feature, which gives a rough estimation of how much each addi-

tional feature contributes to the overall anomaly score. Note that the individual

marginal scores are each independent since they have different set of features, and

hence it should not be expected that the overall anomaly score somehow decom-

poses into them. The last two rows in Table 3.3 show examples of some actual

RDP brute force attempts that correlate with the features shown in the expla-

nations. These examples indicate that the explanations are inherently capturing

some cause of the attack. Note that the anomaly scores for the two instances went

above 1 because of the normalization constant being kept fixed. Explanation for

these these two instances are computed after incorporating feedback (please see

Chapter 4 for details), which caused the weights to be changed and the anomaly

score to rise above 1.

3.9 Main Observations and Recommendation

The main observations from the above experiments can be summarized as follows.

• All of the introduced SFE methods significantly outperformed randomly gen-

erated SFEs.

• The marginal methods were generally no worse and sometimes significantly

better than the dropout methods.

• When using the EGMM anomaly detector, we observed little to no difference
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between the performance of sequential versus independent methods.

• When using the oracle anomaly detector, SeqMarg significantly outperformed

IndMarg which suggests that, in general, sequential methods can outperform

independent methods.

• While the BaB methods were more effective at optimizing ESP in many cases,

this did not translate to outperforming the best greedy method with respect

to MFP.

Overall, based on our results, SeqMarg is the recommended method for computing

SFEs among the methods we studied.

3.10 Summary

This chapter introduced the concept of sequential feature explanations (SFEs) for

anomaly detection. The main motivation was to reduce the amount of effort re-

quired of an analyst to correctly identify anomalies. We described several methods

for computing SFEs and introduced a new framework that allows for large-scale

quantitative evaluation of explanation methods. To the best of our knowledge, this

is the first such large scale evaluation of explanation methods for anomaly detec-

tion. Our experiments indicated that, overall, the Sequential Marginal method for

computing SFEs is the preferred method among those introduced in this work.

An interesting point of future work will be to explore this framework for a wider

range of anomaly detection models and simulated-analyst models. This could in-

clude comparing the relative effectiveness of our generic approaches for comput-

ing SFEs with approaches that are specifically designed for particular anomaly

detectors. One surprising observation from our results is that our more com-

putationally intensive branch-and-bound approach never outperformed our best

greedy approach in actual evaluations. We hypothesized that this was due to the

potential mismatches between: 1) the anomaly detector and analyst model, and

2) the optimization objective, ESP, and the evaluation metric, MFP. Optimizing

more aggressively in light of these mismatches appears to be counter productive.

An interesting point of future work will be to investigate alternative optimiza-

tion objectives and to better understand the surprising effectiveness of the greedy

sequential marginal method.
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Another important direction for future work will be to conduct qualitative

evaluations using human subjects. This is a challenging direction due to the need

to find subject matter experts that are available to take part in evaluation trials.

Alternatively, human studies could be conducted using synthetic benchmarks that

are constructed in a way that allows regular human subjects to be easily taught the

domain properties. These subjects would then be our expert analysts. While this

second approach is less realistic, it would allow for a wider-scale evaluation that

could produce quantitative results in addition to the qualitative observations.
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Chapter 4: Feedback-Guided Anomaly Discovery

4.1 Introduction

General-purpose anomaly detectors typically operate by identifying and ranking

statistical outliers in the data. Different detectors make different choices for the

statistics to monitor and combine, which can result in very different anomaly

rankings for the same data set. Thus, the utility of a particular detector for an

application depends on how well its ranking aligns with what is interesting from

an application perspective. For example, in a computer security application, the

password file may appear anomalous compared to other system files based on

access-pattern statistics. However, an analyst would understand the reason for

this statistical deviation and would not be interested in that particular anomaly

by itself. In general, the gap between statistical outliers and the semantics of an

application can result in high false-positive rates and easily render an anomaly

detector unusable.

One way to reduce false-positive rate is to build domain knowledge into a de-

tector. For example, a designer might apply domain expertise to select statistics

that are more likely to produce interesting anomalies and/or filter anomalies based

on semantically defined white lists. Unfortunately, this requires significant exper-

tise about both the application and anomaly detection. There is also a risk that

important anomalies will be missed due to bias introduced by the designer.

In this chapter, we consider an alternative approach to reduce false positives

based on incorporating feedback from an end-user analyst. In traditional anomaly

detection (without feedback), an analyst is presented with a ranked list of anoma-

lies and then investigates anomalies in that order until time is up. If anomalies of

interest are low in this list, then significant effort will be required to find them.

Rather, in our setting of feedback-guided anomaly discovery, after investigating

the currently top-ranked instance, the analyst provides feedback about whether

the instance was of interest or not. This feedback is used by the detector to adjust

the anomaly scores with the goal of moving anomalies of interest higher in the

ordering. This approach has the advantage of being customizable by the end-user
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analyst with little overhead on the analyst’s time. The primary question is whether

learning can be made efficient and accurate enough to demonstrate a benefit in

practice. In this chapter, we demonstrate that significant benefits are possible on

benchmark data and on a large-scale computer security application.

The main contribution of this chapter is to formulate feedback-guided anomaly

detection within the framework of online convex optimization and derive simple,

efficient, and effective algorithms. This is done by associating a convex loss function

to each feedback response, which rewards the anomaly score for aligning with

the feedback. We consider two different methods, which differ in their choice of

loss function. By leveraging the well-studied area of online convex optimization,

our approaches inherit the simplicity and efficiency of the online algorithms as

well as their solid theoretical grounding, where convergence is understood. Prior

state-of-the-art approaches, such as AAD [Das et al., 2016], are significantly more

complex to implement, incur much higher computational complexity, and have

less clear theoretical underpinnings. In addition, prior approaches incorporate a

significant number of parameters, whereas, our approaches have a single learning

rate parameter, for which we show that a single value works well across all of our

experiments.

While our feedback approach can be applied quite generally, in this chapter

we focus on the popular class of tree-based anomaly detectors, which includes

the state-of-the-art Isolation Forest detector [Liu et al., 2008], among others. At

a high-level, detectors in this class are distinguished based on how they “assign

weights” to edges in their trees. Our feedback approach is able to automatically

span this space, covering existing and new tree-based detectors, by tuning the

weights in response to feedback. We conduct experiments on individual benchmark

problems from prior work and on six large anomaly detection benchmark sets. The

results show that our online approaches are able to significantly accelerate the rate

that an analyst can find anomalies compared to not using feedback. We also show

significant improvements over the prior state-of-the-art.

We also demonstrate our approach on real cybersecurity attack data collected

from a recent DARPA red team exercise, which contains multiple attacks on mul-

tiple operating systems, over multiple days. We focus on the problem of detecting

anomalous system entities, with the goal of quickly identifying the malicious en-

tities that are part of an attack. The malicious entities are extremely rare in



63

the data, which yields a very difficult anomaly detection problem. Our results

show that our feedback-based approach allows for malicious system entities to be

discovered significantly earlier than when no feedback is used by the system.

4.2 Anomaly Detection Problem Setup

We reiterate the anomaly detection problem which can be defined over a set of

m data instances D = {x1, . . . , xm}. Often the data instances are described as

real-valued vectors, but our approach is agnostic to the instance representation.

We will assume, however, that the associated anomaly detector for the instances

has a particular generalized linear form (see Section 4.4). There is an unknown

partition of D into a set of nominal instances N and a set of alien instances A, so

that D = N ∪ A. Generally the nominal instances account for an overwhelming

fraction of the data, that is, |A| � |N |, which is one of the key challenges in

anomaly detection. We refer to instances in A as aliens, rather than just anomalies,

to clarify that those are the semantically interesting instances that we wish to

discover in the data. In most applications, the aliens are generated by a process

distinct from the process generating the nominals, in particular, a process that is

important to detect for the application. For example, in our computer security

application, the data instances describe the behavior of computer system entities,

such as processes, files, and netflows, and the aliens correspond to the malicious

entities that are part of an attack.

Since D is typically large, manual search for aliens through all instances is

not practical. Anomaly detectors help address this problem by assigning anomaly

scores to instances in D to yield an overall anomaly raking, with the goal of having

the aliens be higher ranked than the nominals. Given such a ranking, an analyst

can inspect instances in decreasing order of anomaly rank to better direct their

search for aliens. Of course, anomaly detectors are rarely perfect, and nominals

are often ranked above aliens. Thus, the practical utility of an anomaly detector,

in this setting, is related to the amount of analyst effort required to uncover alien

instances. In our experiments, we will measure how many aliens are discovered per

instance investigated and how many instances must be investigated until the first

alien is discovered.

The above setting uses a static anomaly ranking throughout the investigation.



64

This fails to take into account information about the result of each analyst in-

vestigation. The setting of feedback-guided anomaly discovery aims to use that

information to improve the anomaly detector during its operation. In particular,

on each round, the analyst investigates the currently top-ranked instance in D and

labels it as “nominal” or “alien”, depending on whether it is of interest or not.

The labeled instance is then given to the anomaly detector as feedback, which

is used to possibly adjust the anomaly ranking. The process of investigating the

top ranked instance, giving feedback to the detector, and adjusting the ranking

continues until the analyst resources are exhausted.

This setting is related to active learning in the sense that the algorithm is

providing the analyst with instances to be labeled. Whereas most traditional active

learning work focuses on deciding which instance to query next, we fix that choice

in this work (query the top ranked instance) and instead focus on how to best

update the anomaly detector based on the feedback. This strategy of querying the

top ranked instance makes sense, given our goal of quickly identifying aliens. There

is work, however, on related problems that suggests non-myopic query strategies

may be beneficial (e.g. [Jiang et al., 2017]).

4.3 Related Work

The general problems of active learning [Settles, 2012] is closely related to our work.

Active learning mainly focuses on finding a query strategy to select instances that

provide the most useful information for learning. In this work, rather, we use a

simple greedy instance selection mechanism and place our emphasis on how to

best adapt the anomaly detector in response to feedback. It is possible that more

complex active learning query strategies may also benefit our setting in future

work.

Rare-category detection [Pelleg and Moore, 2005] is another closely related prob-

lem. The goal of rare-category detection is to uncover at least one instance from

each of some set of unknown categories as quickly as possible. While related to our

problem of feedback-guided anomaly discovery, our focus is to uncover as many

instances from the alien class as possible using the minimal number of queries to

the analyst.

There are several other efforts [Raginsky et al., 2012, Varadarajan et al., 2017]
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that have considered incorporating feedback into a sequential setting for anomaly

detection , where data arrives in an online fashion and must be queried when

it arrives or be ignored. Rather, in our work, we focus on the batch anomaly

detection setting, where we have a large set of data that is being analyzed in order

to find the aliens as efficiently as possible.

The most closely related prior work is the Active Anomaly Discovery (AAD)

algorithm [Das et al., 2016, Das et al., 2017], where the same setting for incor-

porating feedback into anomaly detection is studied. In [Das et al., 2016] AAD

was introduced as a way to incorporate feedback into a the LODA anomaly de-

tector [Pevnỳ, 2016]. LODA forms an ensemble of component anomaly detectors

based on random linear projections, which are combined via uniform weights. At

each step, the AAD approach [Das et al., 2016] defines and solves an optimization

problem based on all prior analyst feedback, which results in new weights for the

components. This optimization approach was later applied to adjust the weights

of the Isolation Forest anomaly detector [Das et al., 2017]. One disadvantage of

this approach is that the optimization problem involves a number of components

that each have hyper-parameters associated with them. This makes it difficult

to develop a formal characterization of the overall objective being optimized and

requires careful selection of the hyperparameters. In addition, the optimization

problem is non-convex and requires a relatively complex “alternating” convex op-

timization approach with its own parameters. Rather, one of our main motivations

is to do as well or better than AAD using a much simpler and efficient approach

with a minimal number of parameters. In addition, our approach is built on top of

the well-established area of online convex optimization, which allows it to inherit

the theoretical characterizations developed by that community.

Some additional efforts on incorporating feedback into anomaly detection in-

clude: SSAD (Semi-Supervised Anomaly Detection) [Görnitz et al., 2013] and AI2

[Veeramachaneni et al., 2016]. SSAD incorporates knowledge of labeled instances

within a semi-supervised learning setting and AI2 is an ensemble of unsupervised

anomaly detectors with a supervised learner. Another supervised method called

ATGP [Grill and Pevnỳ, 2016] uses some labeled data to estimate a convex com-

bination of a set of anomaly detectors. In [Das et al., 2016], it was shown that

AAD is able to significantly outperform these methods, establishing AAD as the

state-of-the-art, which we compare to in this chapter.
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Since we employ our feedback approach on cybersecurity data, we also mention

closely related work in security. Prior work has studied anomaly detection for host-

based intrusion detection [Dong et al., 2017, Forrest et al., 1996, Gao et al., 2004,

Sekar et al., 2001, Shu et al., 2015]. The major focus of existing work is on learning

normal behavior from sequences of system calls or execution control flow. These

approaches show promise but are prone to high false positive rate, which hinders

their use. Our approach is motivated by recognizing the difficulty of achieving low

false positive rates using fixed anomaly detection schemes across a wide range of

host systems. By adapting the detection system based on analyst feedback, we

aim to provide a more robust system that can quickly be tuned to be effective on

any given host system.

4.4 Incorporating Feedback via Online Convex Optimization

In this section, we first overview the online convex optimization (OCO) framework

and our corresponding formulations of feedback-guided anomaly discovery. Next,

we describe the OCO algorithms used in this work, their properties, and some

implementation choices.

4.4.1 Online Convex Optimization

Many classic and new online learning algorithms can be described and analyzed

within the OCO framework. A good introduction to OCO framework can be found

in [Shalev-Shwartz et al., 2012]. Here we describe only the elements essential for

our work.

OCO is formulated as an iterative game against a potentially adversarial envi-

ronment where our moves are vectors from a convex set S. At discrete time steps

t the game proceeds as follows:

1. We select a vector wt ∈ S.

2. The environment selects a convex function ft : S → R.

3. We suffer a loss ft(wt).

Roughly speaking, the goal is to select a sequence of vectors with small accumulated

loss over time. Because there are no restrictions on the sequence of convex functions
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and because we must select wt before seeing ft, the total loss over T steps can be

arbitrarily large. Thus, the objective of OCO is typically stated in terms of the

regret with respect to the best vector w∗ in hindsight. More formally, given a T -

step game episode where we play (w1, w2, . . . , wT ) against (f1, f2, . . . , fT ) the total

T step regret is equal to

RegretT =
T∑
t=1

ft(wt)− min
w∗∈S

T∑
t=1

ft(w
∗), (4.1)

which is our accumulated loss minus the minimum loss possible on the sequence of

functions using any fixed vector in S. A fundamental goal of OCO algorithms is

to achieve worst-case regret that grows sub-linearly in T , since the time-averaged

regret then goes to zero. This “no regret” property is powerful, since it indicates

that an algorithm is competitive with the best possible solution in hindsight (for

large enough T ) even without the advantage of hindsight. As an example, the

family of Follow-the-Regularized-Leader algorithms achieves a regret that grows

as O
(√

T
)

under fairly general conditions.

4.4.2 Loss Functions for Query-Guided Anomaly Discovery

Query-guided anomaly discovery can also be viewed as a game where on each

round we output an anomaly ranking over the data instances and we get feedback

on the top-ranked instance. We wish to minimize the number of times we receive

“nominal” as the feedback response. To put this problem in the OCO framework,

we first need to place some reasonable restrictions on the form of the anomaly

detectors that we will consider. We study the family of generalized linear anomaly

detectors (GLADs), which are defined by a feature function φ : D 7→ Rn, which

maps data instances to n-dimensional vectors and an n-dimensional weight vector

w. In this work, the anomaly score assigned to an instance x is defined to be

SCORE(x;w) = −w · φ(x), with larger scores corresponding to more anomalous

instances.1 Our algorithm will adapt an anomaly detector by adjusting the weight

vector w in response to feedback.

We will see in Section 4.5 that tree-based anomaly detectors are easily modeled

1We could also define the score without the negative sign. However, this definition is more
natural for the class of tree-based anomaly detectors described in Section 4.5.
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as GLADs. Many other types of detectors can also be parameterized in various

ways as GLADs to support adaptation. For example, prior work on query-guided

anomaly discovery [Das et al., 2016] parameterized the LODA anomaly detector

[Pevnỳ, 2016] as a GLAD by assigning a weight to each of its local models. As

another example, given any collection of anomaly detectors, we can form an en-

semble by using their scores as the components of φ and weighting their relative

influences via w. Depending on the type of detector, it will sometimes be natural

to place constraints on w to capture prior expectations. For example, in our tree-

based models, it will be natural to place non-negativity constraints on the weights.

As long as the constraint sets are convex (such as non-negativity) and there is an

associated projection operator (see below), our algorithm can easily incorporate

such constraints.

Given a GLAD parameterization of an anomaly detector, we can now connect

query-guided anomaly discovery to OCO. On each feedback round we select a

vector wt for the detector, which specifies an anomaly ranking over instances.

Rather than receiving a convex function ft from the analyst, we receive feedback

yt on the top-ranked instance, where yt = +1 if the instance is alien and yt = −1

if it is nominal. The question is how to translate that feedback yt into a convex

function for the OCO framework that will result in effective use of the feedback.

Intuitively, if yt = +1 then our current cost vector should suffer a smaller loss than

if yt = −1, since the ranking based on wt correctly put an alien at the top. Further,

if yt = −1 then it may also be sensible to have the loss suffered increase with the

“confidence” the detector has in the top ranked instance being anomalous. Below

we give two simple loss functions based on these principles.

Linear Loss. Let xt be the top-ranked instance in D under the ranking given

by wt. The linear loss is given by

ft(wt) = −ytSCORE(xt;wt) = ytwt · φ(xt), (4.2)

which is a linear (and hence convex) function of wt. This function is similar

to margin-based losses used for classification problems. When we receive alien

(nominal) feedback, this loss decreases with increasing (decreasing) anomaly score

as desired.

Log-Likelihood Loss. In linear classification it is common to define loss
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functions in terms of a probabilistic semantics. Our next cost function follows this

approach by using the anomaly score SCORE(x;w) to define a discrete probability

distribution Pa over D. We will interpret Pa(x;w) as the alien distribution from

which alien instances are drawn when aliens occur. We use the following log-linear

form for Pa:

Pa(x;w) = exp (SCORE(x;w)) /Z = exp (−w · φ(x)) /Z, (4.3)

where Z is the normalizing constant Z =
∑

x′∈D exp (−w · φ(x′)). Thus, Pa assigns

higher probabilities to instances with higher anomaly scores. The corresponding

loss function in the OCO framework is the signed log-likelihood of the top-ranked

instance xt:

ft(wt) = −yt log (Pa(xt;wt)) . (4.4)

The function ft is a convex function of wt over any convex vector set. For alien

feedback (yt = +1), the loss becomes positive and becomes smaller when Pa(xt) is

larger, as desired. The situation is reversed for nominal feedback. An algorithm

that achieves low regret with respect to this choice of loss function will tend to

select weight vectors that assign lower probabilities to nominals and higher prob-

abilities to anomalies. Compared to the linear loss, this loss function incorporates

information from all of D via the normalization term Z. While our experiments

show that this appears to sometimes improve the anomaly detection performance,

it also incurs computational overhead. If computing the full normalization term is

too expensive for an application, one can use standard techniques such as sampling

to approximate Z [Korč and Förstner, 2008].

Logistic Loss. We have also considered using logistic loss commonly employed

for binary logistic regression classifiers. This loss is qualitatively similar to the

linear loss, and in our experiments it never outperformed linear loss. Thus, we do

not define it here or include it in our experiments.

We note that the above loss functions are proxies for the true objective of

discovering alien instances as quickly as possible. Any OCO theoretical guarantees

concerning regret are with respect to the proxies and not necessarily the true

objective. If there is a weight vector w∗ that tends to rank aliens above nominals,

then achieving a low regret with respect to the proxies will tend to assign higher



70

anomaly scores to aliens and lower scores to nominals as desired. It is reasonable

to expect that this will translate to an improved rate of alien discovery. This

is not guaranteed, however, and it is possible that within a practical number of

rounds, low losses are being achieved but aliens are never ranked at the top of the

ordering. Note, however, that our strategy for selecting the instance xt for the

analyst is designed to result in maximum loss when nominal feedback is received.

That is, xt is selected to have the highest anomaly score and hence is the instance

that wt is currently most confident about being an alien. In practice, we have

found that applying OCO to both objectives using this strategy for selecting xt is

quite effective.

4.4.3 The Mirror Descent Learning Algorithm

A general algorithm for OCO is Follow-the-Regularized-Leader (FoReL). Given a

regularization function R : S 7→ R+ over vectors, at step t, the algorithm plays

the vector

wt = arg min
w∈S

t−1∑
j=1

fj(w) +
1

η
R(w), (4.5)

which is the vector that would have minimized the accumulated loss over the pre-

vious steps while also considering the “regularization loss”. The regularizer R is

often chosen to be the L2 norm, and η determines the influence of regularization.

Given an appropriate choice for η (see below) and under fairly general conditions,

this algorithm with L2 regularization yields a sublinear regret of O
(√

T
)

. How-

ever, the algorithm can be computationally expensive, since each step solves an

optimization problem that grows over time.

Fortunately, there are many choices ofR for which a completely online version of

FoReL can be derived, which achieves the same theoretical guarantees.2 In particu-

lar, we use a variant of Online Mirror Descent (OMD) [Shalev-Shwartz et al., 2012],

which corresponds to FoReL using the regularizer R(w) = ‖w − w0‖22, where w0

is a reference or prior vector. Intuitively, if we have prior knowledge that w0 is a

2The online algorithms are derived by considering a “linearized” version of the original OCO
problem and developing online updates for FoReL on that problem. The regret guarantees of
FoReL hold for the original problem, since it can be shown that the regret of the linearized
problem upper bounds the regret on the original problem.
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Algorithm 2 Online Mirror Descent for Query-Guided Anomaly Discovery

Require: Data Instances D; Generalized-Linear Anomaly Detector with features
φ and weight parameters w ∈ S; regularization parameter η > 0; weight prior
w0

θ1 = w0

for t = 1, 2, 3, . . . do
wt = arg minw∈S ‖w − θt‖2
xt = arg maxx∈D−wt · φ(x) ;; max anomaly score
Get feedback yt ∈ {−1, 1} from analyst on xt
D = D − {xt}
Use yt to define loss function ft based on either Eq. 4.2 or Eq. 4.4
θt+1 = θt − η∂ft(wt) ;; subtract η-weighted sub-gradient

end for

reasonable starting point for a solution, then using this regularizer will encourage

solutions to stay close to w0 unless the data suggests otherwise.

Algorithm 2 gives pseudo-code for our OMD algorithm specialized for query-

guided anomaly discovery. Each iteration starts by selecting a weight vector wt
for the anomaly detector (more on this below), which is used to select the top-

ranked anomalous instance xt remaining in D. The feedback yt is then employed to

define the loss function ft, which is applied to update the weight vector. In order

to compute the sequence of weight vectors, the algorithm uses θt to accumulate

−∂fj(wj) across iterations, which is a negative sub-gradient of the observed loss

function fj at the selected vector wj. Our functions fj are continuous, so this is

just the accumulation of gradients. The next weight vector wt for the next round

is selected as the closest vector in S to θt with respect to the L2 norm. In our

instantiation for tree-based anomaly detectors (Section 4.5), the set S includes

only non-negative weights. In this case, the projection operation simply returns

θt, except that negative vector components are set to zero. A special case of

this algorithm is when S = Rn, which yields the standard unconstrained online

gradient descent algorithm with learning rate η.

The regularization parameter η plays the role of a learning rate. In theory, if we

know the number of rounds T to be played, then a choice of η = Θ(1/
√
T ) yields

the regret bound O
(√

T
)

. If T is unknown, then a similar result can be obtained

using the “doubling trick” [Shalev-Shwartz et al., 2012]. Note that the constant
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factors implicit in the definition of η depend on theoretical quantities of the OCO

problem, which are generally not known. In practice, there is a large literature

on learning rate selection, including adaptive learning rates, which we could draw

on here. However, we found that simply setting η = 1 worked well throughout

our range of experiments. We experimented with various adaptive choices from

the literature, for example, ηt = 1/
√
t, but did not see significant differences. Our

experiments do include an investigation into the sensitivity to learning rate.

4.5 Application to Tree-based Anomaly Detection

There are a number of state-of-the-art anomaly detectors based on constructing

randomized decision trees, where each tree assigns a score to an instance and the

scores are combined, usually via averaging [Liu et al., 2008, Siddiqui et al., 2016,

Tan et al., 2011, Wu et al., 2014, Guha et al., 2016]. The different algorithms vary

in the exact way trees are constructed and the scores they define. However, all of

the detectors can be exactly or closely simulated using a single tree-based GLAD

model, where different weight settings result in different algorithms. Thus, learning

from feedback using this GLAD model can be viewed as attempting to select among

the space of tree based algorithms (both known and unknown) based on feedback.

We now describe the Isolation Forest (IF) algorithm [Liu et al., 2008], which

is a state-of-the-art algorithm that helps motivate our model. Then we describe

the generic tree-based GLAD model.

Isolation Forest. Given a data set D of vector-valued instances, IF analyzes

D to construct a forest of randomized decision trees. Trees are constructed recur-

sively. Starting at the root node with the full data set D, a random test is selected

by first selecting a feature and then selecting a random threshold for that feature

that will separate at least one data instance from the rest. The test is then used

to split the data into left and right children and the recursion continues on each

child. The tree is built until each leaf node contains a single instance. We can view

each node of a tree as defining axis-aligned hyper-rectangular regions determined

by the tests from the root to that node. Leaf nodes define regions that contain

single data points.

The isolation depth of an instance in a tree is the depth of the leaf that it

belongs to. Intuitively, if a data instance is very different from other instances,
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there is a higher chance that a randomly-selected test will isolate that instance.

This suggests that instances that are more anomalous may be expected to have

lower isolation depths on average. The IF algorithm assigns an anomaly score to

an instance x based on its average isolation depth across the randomized forest.

In particular, the score is (a normalized version of) the negative of this average

depth.

Tree-Based GLAD Model. After constructing a forest of trees, it is straight-

forward to define a GLAD model that replicates IF. For each edge e in one of the

trees, let φe(x) be a binary feature that is 1 if instance x goes through the edge

and 0 otherwise. Note that this is a very sparse set of features and most will be

zero for any particular instance. Similarly, associate a weight we to each edge.

Now let φ and w be vectors that concatenate all of the features and weights across

the forest in a consistent order, and let we = 1 for all e. Then the GLAD scoring

function SCORE(x;w) = −w · φ(x) corresponds exactly to the (unnormalized) IF

anomaly score.

If we think of we as the cost of traversing edge e, then IF is using the average

“cost-of-isolation” across the forest as the anomaly score. A low cost-of-isolation

indicates a more anomalous instance. Given this view, it makes sense to consider

assigning alternative weights to edges. For example, if we happen to know that

the hyper-rectangular region of a node n was not interesting from an application

perspective, then we could assign high weights on edges leading to that node. The

isolation cost of instances going through that node would then increase and hence

lower the anomaly score compared to IF. In practice, we generally will not have

such information. However, through the use of analyst feedback we can hope to

adjust the weights in ways that match this intuition.

By adjusting the weights it is possible to generate scores that exactly or closely

match the scores that would be assigned by many other tree-based algorithms. For

example, the average version of RPAD for random forests [Siddiqui et al., 2016]

assigns the normalized frequency as the weight to each edge and hence can be

directly captured by our GLAD model. As another example, in the RS-Forest

algorithm [Wu et al., 2014], which is based on randomized trees, only the score

(estimated density) from the leaf node are considered from each tree. Hence the

corresponding edge weight of the leaf can be set to estimate the log of the density

value and the remaining weights set to zero. A similar weight adjustment can
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be used to arrive at other tree-based algorithms including [Tan et al., 2011] and

[Guha et al., 2016]. Some algorithms, including some parameter settings of IF, do

not grow the trees to full isolation as we do in our experiments, but rather impose

a depth limit on trees. In this case, we can replace the cost-of-isolation with the

cost of the path from the root to a leaf for a given instance.

Mirror Descent for Tree-Based Models. OMD can be implemented very

efficiently for our tree-based models. The trees can store the weights on the edges,

so the cost-of-isolation of data point x can be computed using a simple tree traversal

by summing the weights as x traverses the edges. The main computation performed

by OMD at each step is the gradient of the loss, which is needed to update θt.

Importantly, the only non-zero components of the gradient vector for our two loss

functions will be those corresponding to non-zero components of φ(xt), which are

those components on edges traversed by xt. Thus, by storing components of φt in

the appropriate tree edges, we are assured that we only need to update those that

are traversed by xt.

We build our forests exactly as IF with no depth limit, so that all instances

are completely isolated in all trees. Since IF is known to be an effective anomaly

detector, we select the prior weight vector of OMD to be w0 = 1, which will exactly

simulate IF on the first round. We also constrain the weights to be non-negative

in this work, which matches the interpretation of the weights as edge costs. We

found that allowing for negative weights did not significantly hurt performance,

but the non-negativity constraint did show minor improvements in some cases.

4.6 Empirical Results

We performed experiments to answer five questions.

• Question Q1: how do the OMD algorithms for incorporating feedback com-

pare to the baseline with no feedback on benchmark data?

• Question Q2: how do the OMD algorithms compare to the previous state-

of-the-art AAD algorithm on benchmark data?

• Question Q3: what is the impact of the learning rate parameter on the OMD

algorithm?
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• Question Q4: what is the relative value of feedback on nominals versus

feedback on anomalies?

• Question Q5: do the OMD algorithms show utility for using feedback on

real-world cybersecurity data?

For all of the above questions, our experimental focus is on evaluating the ef-

fectiveness of feedback for tree-based anomaly detectors. Due to this focus and

space limitations, we do not include experiments with other types of anomaly

detectors in this chapter. We note, however, that the baseline version of our

system, which does not use feedback, corresponds to the Isolation Forest algo-

rithm [Liu et al., 2008], which has been shown to be among the top performers on

a large-scale evaluation [Emmott et al., 2013]. In addition, results in prior work

on AAD [Das et al., 2017] have shown that the AAD approach, which we com-

pare to here, significantly outperforms the state-of-the-art LODA [Pevnỳ, 2016]

anomaly detector. For our comparison to AAD, we use the currently available im-

plementation for tree-based detectors [Das et al., 2017] with the parameter settings

recommended in that work. AAD has been shown to be a state-of-the-art feedback

mechanism in prior comparisons using both tree-based methods [Das et al., 2017]

and the LODA anomaly detector [Das et al., 2016].

We used the same randomized forest construction strategy for both our ap-

proach and AAD, which is identical to that used by Isolation Forest. All of our

experiments used 100 trees and a sub-sample size of 256 to grow each tree (an Iso-

lation Forest default). All trees were grown until all data instances were isolated.

Because the tree construction is randomized, we repeat all of the experiments 10

times and report the average results with confidence intervals. Our primary eval-

uation metric is to count the average number of alien instances found after each

number of feedback rounds.

In order to run the algorithms that incorporate feedback we use simulated ana-

lysts to label the top ranked instance at each round as either “nominal” or “alien”.

In particular, each of the benchmark data sets and the computer security data sets

have ground truth labels that are used to provide feedback and for evaluation of

the algorithms. The labels are hidden from the anomaly detectors, except those

that are revealed as feedback by the simulated analyst.
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Figure 4.1: Feedback result comparison with AAD [Das et al., 2017] on some
standard anomaly detection datasets [Das et al., 2017]. 95% confidence interval
is also shown for some feedback iterations, others are similar, hence not shown
to make the plot clear.

4.6.1 Experiments on Benchmark Data

Single Benchmark Results. To address Q1 and Q2, we first show results on

six anomaly detection data sets used previously to evaluate AAD [Das et al., 2017].

Figure 4.1, shows results of our two OMD3 methods with Linear and Log-Likelihood

loss functions, the state-of-the-art AAD method, and the baseline IF algorithm that

does not incorporate feedback. Each graph shows 100 feedback iterations where

the top-ranked entity is presented to the simulated analyst and the resulting label

is used to update the anomaly detector (or ignored by the pure IF). Each graph

illustrates the number of aliens found versus the number of feedback iterations.

An ideal result would be a line with slope 1, which indicates that the anomaly

detector never shows the analyst a false positive.

3Codes available: https://github.com/siddiqmd/FeedbackIsolationForest
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For Q1 we observe that with very few exceptions, the algorithms that incor-

porate feedback are able to improve upon the baseline, sometimes by a substan-

tial factor. In some cases, the rate of anomaly discovery increases by more than

2x. For Q2 both of our OMD approaches improve over AAD on AAN Thyroid,

Mammography, and Yeast. They are about the same as AAD for Covtype and

Cardiotocography, and slightly worse on Abalone. This gives evidence that the

OMD approaches are highly competitive with the prior state-of-the-art, despite

being dramatically simpler to implement, much more computationally efficient,

and having just a single parameter that is held fixed at 1.

Mother Set Benchmark Results. To provide more evidence for Q1 and Q2,

we ran experiments on a much larger number of benchmarks from a recent large-

scale anomaly detection evaluation [Emmott et al., 2013]. That study used UCI

data sets as “mother sets” for creating large sets of anomaly detection benchmarks

with varying characteristics. We selected 6 mother sets and used all benchmarks

from each set with an alien rate of 0.01 (120 to 300 benchmarks per mother set).

These benchmarks tend to be more challenging than the data sets used above.

We ran the same experiments as above for each benchmark and for each mother

set report average results across its benchmarks in Figure 4.2. Runs for each

benchmark are repeated 10 times.

For Q1 we see that the feedback methods are able to outperform the baseline on

these benchmarks, except for Abolone, where AAD and Linear does slightly worse

(decrease in less than 1 discovered anomaly on average). For Q2 overall we see that

both OMD methods tend to be competitive with AAD. The Log-Likelihood loss

function is as good or better than AAD across all mother sets and better on at least

4 of the 6. The Linear loss function is better on at least 2 of the 6 and the same or

incomparable (sometimes better sometimes worse) for the remaining mother sets.

These results again suggest that the OMD approaches can significantly improve

over the baseline and are competitive with the prior state-of-the-art despite the

simplicity.

Sensitivity to Learning Rate. For Q3 we ran experiments with the OMD ap-

proaches using a range of fixed learning rates, noting that all previous experiments

used a fixed learning rate of 1. Figure 4.3 shows results for the Log-Likelihood

loss for three benchmarks. These results are representative of the learning rate

behavior on other benchmarks and for the Linear loss. We varied the learning
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Figure 4.2: Average feedback iteration curves on 6 benchmark datasets from
[Emmott et al., 2015]. Each curve is averaged over 120-300 benchmark datasets.
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Figure 4.3: Sensitivity of the learning rate parameter in three different benchmark
datasets. Learning rate 0 indicates variable learning rate. The black dotted line
is the baseline performance without feedback.

rate from 0.05 to 10 and also included a commonly used variable learning rate of

ηt = 1/sqrt(t), where t is the feedback iteration number (labeled as 0 in the plot).
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Figure 4.4: Effect of incorporating feedback from alien and/or nominal instances
only in three benchmark datasets.

We see that all of these learning rates are still able to outperform the baseline

IF method. However, the performance drops for learning rates that are on the

small or large range. Overall it appears that a learning rate of 1 is a robust and

recommended setting.

Influence of Nominal and Alien Feedback. For Q4 we ran experiments

where we restricted the types of feedback used for learning. Figure 4.4 gives results

for the Linear and Log-Likelihood loss functions for three cases: (+ nominalFB)

where only feedback on nominal instances is given to OMD, (+ alienFB) where only

feedback on aliens is given to OMD, (+ alienFB + nominalFB) where all feedback

is given to OMD to update the weights. This last configuration is the normal mode

of operation. Results are provided for three representative benchmarks.

The aim of this experiment is to help provide some understanding about the

relative importance of alien versus nominal feedback and whether this changes

across problems. This can give insight into the structure of the anomaly detection

problems that is being exploited through the use of feedback. There are several

main observations. First, the performance when using just nominal feedback (+

nominalFB) is generally better than using no feedback (baseline) and sometimes

significantly worse than using all feedback. Second, using just alien feedback (+

alienFB) can sometimes start out worse than (+ nominalFB) for small numbers

of iterations, but eventually catches up and overtake (+ nomialFB). In fact for

Spambase using only alien feedback was actually better than using all of the feed-

back. This was also observed for Abolone (not shown), though not as dramatically.
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In these cases the alien feedback provides such as useful signal for learning that

including nominalFB apparently negatively interferes with that signal.

Overall it is clear that both types of feedback provide significant value and in

most cases the combination of the two is better than either alone. The relative value

of alien versus nominal feedback, however, depends on the problem and on how

much feedback has been acquired. The fact that alien feedback is quite powerful

by itself suggests that our methods can effectively exploit cluster structure among

aliens. That is, when some aliens are discovered the feedback on those aliens allows

for “similar” aliens to be discovered.

Finally, we can also observe that the Linear and Log-Likelihood loss functions

lead to very similar performance when given only alien feedback (+ alienFB). In

contrast, there is often a more significant performance difference between them

for only nominal feedback (+ nominalFB). This indicates that the methods may

exploit alien feedback in a similar way, but exploit nominal feedback quite differ-

ently. This may be due to the global normalization of the Log-Likelihood model,

since if the probability of one instance is decreased due to nominal feedback, then

it must increase for some other instance(s). However, we do not see a clear winner

between Log-Likelihood and Linear for nominal-only feedback, meaning that the

normalization does not necessarily have a positive impact.

4.6.2 Experiments on Cybersecurity Data

Attack Datasets. To address Q5 we use datasets based on audit logs that were

generated during attack campaigns carried out by a red team as part of the DARPA

Transparent Computing program. We collected data from three different hosts

(Host1, Host2, Host3): two running the FreeBSD server operating system and one

running the Ubuntu desktop operating system. Data for two of the hosts (one

FreeBSD and one Ubuntu) were collected over a three-day period and from the

other over a five-day period. During the data collection period, all hosts were

running benign activities resembling normal workloads. On each host, the red

team executed an unknown attack campaign, which started at a time that was

unknown to us. Our goal is to use anomaly detection to detect “alien” system

entities that are involved in the attacks. The data includes events involving three

types of entities: processes, files, and netflows.
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After the attacks were completed and our results reported to the red team, the

red team released a description of each attack scenario, which outlined the key

entities and events. We used the descriptions to produce a ground truth encoding

of the attacks, where each entity and event was labeled as being part of the attack

or not. We use this ground truth to evaluate our approach and also to simulate

feedback provided by a system analyst. The total number of system events in

the logs for each host was 2.3M (Host1), 9M (Host2), and 6M (Host3) and the

number of events associated with attacks was 316 (Host1), 473 (Host2), and 1139

(Host3). The number of total system entities in the data was 137K (Host1), 372K

(Host2), and 78K (Host3) with the number of alien entities associated with the

attacks being 42 (Host1), 51 (Host2), and 51 (Host3). Note that the fraction of

alien entities here is exceedingly small.

Anomaly Detector Configuration. Each instance for our anomaly detector

corresponds to a system entity and we described these system entities via a set of

20 “views”, where each view computed a set of descriptor features for the particular

entity type. There were approximately an equal number of views per type. For

example, there is a view that computes features about the statistics of process

file access patterns. The views were constructed using domain knowledge about

what subsets of information would potentially be useful to consider jointly when

searching for anomalies. It was not clear to the domain experts, however, which

of the views would actually be useful, if any.

We created a single tree based detector that incorporated all views. To do

this, we built a randomized IF for each of the views individually, containing 100

trees each. Then we put those trees together into a single forests of 2000 trees.

Given a system entity its score can be computed using all of the trees, except

that if a tree does not apply to the type of entity being considered it is ignored.

Given such a forest we run our OMD feedback algorithms using a simulated analyst

along with the IF baseline. Interestingly this overall approach can be viewed as a

principled way of combining multiple views via feedback, since the feedback will

effectively help up-weight and down-weight information associated with different

views according to the inferred utility. For these experiment, we were unable to

run AAD due to the currently available code not supporting the composition of

trees across views as described above.

Results. Figure 4.5 shows the number of malicious entities detected as a func-
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Figure 4.5: Feedback iteration results when applied to combine all 20 views on
different hosts.

Table 4.1: Time to detect first malicious entity

Dataset
# of iterations to 1st malicious entity
Baseline Linear Log-Likelihood

Host1 42.7 ± 24.3 2.7 ± 0.7 12.9 ± 6.3
Host2 61.8 ± 26.9 8.1 ± 1.1 32.2 ± 22.7
Host3 41.4 ± 1.1 21 ± 3.5 20.6 ± 3.5

tion of the number of feedback iterations for each of the three hosts. We see that

both feedback iterations are able to improve the rate of discovered aliens compared

to the IF baseline. This is particularly significant on Host2. Note that not all at-

tack entities are detected. This is expected, since many of the entities involved

in attack behave quite normally. The other entities exhibit unusual behavior that

can be detected, for example, entities involved in initial exploits or exfiltration.

The key utility in such a system is to provide analysts with starting points for

uncovering the full attack via more detailed post-attack analysis.

Finally, to provide another utility of our approach, Table 4.1 records the average

number of iterations until the first attack entity is discovered with our feedback

approaches and the IF baseline. This is a particularly relevant metric, since it

roughly quantifies the amount of investigative work required to identify the first

entry point into the attack to seed further investigation. We see that both feedback

methods Linear and Log-Likelihood significantly reduce the number of iterations

required compared to the IF baseline. The linear loss function is particularly effec-

tive here and for Host1 and Host2 is significantly better than the Log-Likelihood
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Table 4.2: Detection result after each feedback round

Feedback Round 1 Feedback Round 2
Iteration # 1 2 3 1 2 3

# TPs 1 9 20 0 1 2
# FPs 11 4 0 10 17 23

loss.

4.7 Experiments on Real World Network Data

In this section we describe results after applying the feedback approach on some

real world nework data [Siddiqui et al., 2019b]. Please see the Section 3.8 for

details about the experimental setup (datasets and anomaly detector setup).

4.7.1 Incorporating Analyst’s Feedback

Once we have the top ranked outliers along with their explanations, we present this

ranked list to the analyst. The analysts time is an extremely valuable resource,

and we only had access to one professional analyst who could investigate about

20 instances per week in addition to their standard responsibilities. Analysts have

access to much richer data logs than is available in the features in our dataset which

allows them to make a confident assessment as to whether or not the anomalous

activity is malicious. After each investigation the analyst give us their verdict as

either “True Positive” or “False Positive”. In some cases, the analyst is unable

to decide if there is enough information to make a certain decision, so the analyst

just labels that instance as “unknown”. We only incorporated “True Positives” or

“False Positives” in our feedback and ignored the unknowns.

4.7.2 Detection Results

We performed two rounds of feedback with the help of a professional analyst and

repeated three iterations each time. Table 4.2 [Siddiqui et al., 2019b] shows the

number of true positives and false positives detected after each iteration of the

feedback round. In the first feedback round at iteration 1 we only detect 1 TP
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and 11 FPs. After incorporating them we discovered 9 TPs and 4 FPs in the

next iteration. After we included these new TPs in the third iteration the system

became really good at detecting TPs and detected 20 TPs without any FPs. After

further investigation, we found that all the TPs discovered in this round belong to

the same type of attack known as RDP Brute Force Attempt. Next, we shifted our

focus to detecting examples from a different type of attack. To that end, we started

a second feedback round with the very first model and intentionally incorporated

all the previous TPs and also all the FPs discovered so far as FPs. This strategy

forced the model to ignore the RDP Brute Force Attempts. We continue this

round for another three iterations and detected 1 and 2 TPs in iteration 2 and 3

respectively. During this round, we uncovered an additional attack behavior, that

of network port scanning. These results show that in just a few iterations, the

system can become very effective at discovering attacks with a small false positive

rate for the top K results. We also found that providing TPs as feedback seems to

be more effective at discovering similar type of attacks, and FPs as feedback helps

to focus on finding something different than the type what the FPs belong to.

4.8 Summary

In this chapter, we developed a human-in-the-loop anomaly detection system,

where an analyst can provide direct feedback to the unsupervised anomaly detec-

tor. The goal is for the anomaly detector to then align its anomaly scores with the

application-specific notion of interestingness. We formulated this problem within

the framework of online convex optimization and defined two loss functions, which

lead to two simple and efficient algorithms with a single parameter that was held

constant throughout our experiments. We instantiated the algorithm for the wide

class of tree-based anomaly detectors. Our results on a large number of benchmark

data sets demonstrates that our approach is able to significantly improve upon a

strong baseline that does not use feedback and improve over the prior state-of-the-

art algorithm AAD, which incorporates feedback. Overall both of our loss functions

were effective, with the Log-Likelihood loss function showing slighly more robust

performance. We also showed the effectiveness of our approach when applied to

large cybersecurity datasets generated by a red team for a recent DARPA evalua-

tion exercise. Our method also improved significantly the rate that attack entities
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can be found and reduce the effort needed to find the first attack entity. In fu-

ture work we would like to extend our current approach to incorporate feedback

for any arbitrary anomaly detection method. Another critical component moving

forward is to study interfaces that best support a system analyst in investigating

proposed anomalies, which will involve providing the analyst with clear explana-

tions about why the system believes an entity is potentially anomalous. To be able

to incorporate feedback on such explanations would be another interesting future

direction.
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Chapter 5: Class Discovery

5.1 Introduction

In many real world situations we are interested in identifying all of the distinct

classes of a given set of examples. For instance, in security settings we want to know

how many different types of attacks a given dataset contains. In particular, events

in the data are either benign or malicious, and each has a label reflecting the type

of normal behavior or attack. Our goal is to identify all the distinct behaviors (e.g.

classes) with the help of an oracle who can provide the class label of any queried

example. So, we want to uncover all the distinct class labels by asking as few

queries as possible to the oracle. The most related research to this idea is on active

learning [Settles, 2012], which focuses on improving the underlying classifier with a

small number of label queries to an expert. Rather, for the class discovery problem,

our main focus is to discover at least one example from each class which makes

is more related to the Rare Category Detection (RCD) [Pelleg and Moore, 2005,

He and Carbonell, 2008] problem.

In the literature, there exist various approaches to solve the class discov-

ery problem that are inheriting ideas from anomaly detection, rare class dis-

covery [He and Carbonell, 2009], hierarchical clustering [Vatturi and Wong, 2009],

active learning with classifiers [Haines and Xiang, 2014, Hospedales et al., 2011,

Hospedales et al., 2012], etc. We didn’t find any independent empirical compari-

son of these different methods within a single framework. So, our overall goal in

this chapter is to provide an independent evaluation of these different approaches

under a set of constructed benchmark datasets.

In the next Section 5.2, we define the class discovery problem more formally,

and then in Section 5.3 we describe various approaches to address this problem. In

Section 5.4, we describe some metrics to evaluate all the class discovery approaches

under same framework. Finally, we summarize our findings in Section 5.5.
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5.2 Problem Setup

Suppose we have a set of instances X = {x1, x2, ..., xn}, where xi ∈ Rd. Each

instance xi belongs to a class yi, which can take one of k distinct class values,

that is, yi ∈ {1, 2, ...k}. We also have an oracle function C∗(x) which returns

the true class label of an instance x on request. But, requesting a class label

for an instance xi is difficult, time consuming and sometime requires significant

human resource and effort. The goal is to discover at least one instance from each

class with a minimum number of queries to the oracle. Contrary to active classifier

learning, where the number of classes is typically known, the number of classes k is

unknown to the class discovery algorithm. For simplicity, we assume there exists

one majority class, and the rest are minority classes (typically assumed in rare

category detection problem [He and Carbonell, 2008]). This makes the problem

more suitable in security applications, where the majority class usually represents

the benign class, and each minority class may correspond to an attack.

5.3 Class Discovery Algorithms

In this section, we describe several algorithms for the class discovery problem

that are based on concepts from anomaly detection, rare category discovery and

hierarchical clustering, etc. All these algorithms have a general structure: each

one typically starts with a base model (i.e., a classifier or an anomaly detector)

trained on unlabeled data, and then uses the current model to heuristically select

the next example to query and the result of the query is then used to update the

model. Different methods differ primarily in the base model and the heuristic they

use.

5.3.1 Anomaly Detection

One simple idea for class discovery is to use an anomaly detector. If we have

one majority class and the rest are rare classes, the anomaly detector will ideally

identify instances of those classes as anomalous. In this section, we describe two

class discovery approaches based on the anomaly detection technique Isolation

Forest [Liu et al., 2008].
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5.3.1.1 Static Isolation Forest

We employ the anomaly detector Isolation Forest [Liu et al., 2008] which produces

a ranking of the instances based on their anomaly scores (e.g., average isolation

depth). The hope is that highly ranked instances will be from different rare classes.

We simply query the oracle for the instances from most anomalous to least anoma-

lous. One problem with this approach is that even if a class is rare, when there

is an enormous amount of data in the overall dataset (e.g., the dataset used in

Section 3.8.1), then even anomalous classes can have large numbers of instances.

Those instances can all get high anomaly scores and be ranked close to the top.

So, we might discover only one type of rare class. This problem can be handled

by providing feedback for the earlier ranked instances so that the instances from

the same class are then moved later in the ranking (see the next Section 5.3.1.2

for this approach). Another problem with this simple approach is that it doesn’t

exploit the answers to the oracle queries.

5.3.1.2 Isolation Forest with Feedback

In this approach, we leverage the oracle query to give feedback to the anomaly

detector so that the detector can focus on discovering new classes. We provide

negative feedback for the top ranking instance to the detector using the techniques

described in Section 4.4. We specifically used the feedback approach with the

linear loss function of Equation 4.2 for simplicity. This is an iterative process,

that is, we pick the top ranking instance and provide feedback for it to adjust

the parameters which gives a new ranking. We then again pick the top instance

that was not previously queried and repeat the process. The idea is that with the

negative feedback, the anomaly detector’s weights will be adjusted in a way that

forces the detector to focus on a different region from where the feedback is given.

The instances that are similar to the previous queries will be ranked lower and the

instances from different classes will be ranked higher.

5.3.2 Likelihood1

One general query criterion is to select points that are badly explained by a model,

for example, a generative classifier or an anomaly detector. The low likelihood
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points are usually good for discovering new classes. In Hospedales et al. [2011],

they used this approach where the points with low likelihood are queried. They

used incremental kernel density estimation [Sillito and Fisher, 2007] for likelihood

computation:

i∗ = argmin
i

(
max
yi

p(xi|yi; θ)
)

(5.1)

where, p(x|y; θ) is the class conditional distribution and θ is the parameter of the

model. This approach aims to identify the data point that is “least explained” by

the current model. Queries are then added to the model to increase their likelihood

and ideally the likelihood of similar instances from the same class.

5.3.3 Entropy1

Entropy is a well known query criterion for refining the class boundary. The main

idea is to query uncertain points; this can improve discrimination between classes.

In Hospedales et al. [2011] they used uncertainty which is quantified by posterior

entropy and the point with maximum uncertainty is queried:

i∗ = argmax
i

(
−
∑
yi

p(yi|xi; θ) log p(yi|xi; θ)

)
(5.2)

They used the support vector machine (SVM) [Deselaers et al., 2010] model with

Gaussian kernel for classification. The probability p(y|x) can be approximated

based on the distance to the margin at each point [Settles, 2009].

5.3.4 DPEA1

Hospedales et al. [2012] define a criterion called Dirichlet Process Expected Accu-

racy (DPEA) to select a query point that maximizes the expected utility ŨDi(θ):

i∗ = argmax
i

ŨDi(θ) (5.3)

1Code obtained from: http://homepages.inf.ed.ac.uk/thospeda/downloads.html
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The expected utility is defined as:

ŨDi(θ) =
∑
yi

p(yi|xi)
1

N

∑
j∈L∪i

pθ+i(yj|xj) +
∑
j∈U\i

∑
yj

p(yj|xj)pθ+i(yj|xj)

 (5.4)

Where, L is the labeled dataset, U is the unlabeled dataset, Di = {L∪(xi, yi), U\xi)}
denotes the dataset with the ith example labeled. θ + i reflects the updated clas-

sifier parameters after adding the ith example to the training set with its putative

label yi, pθ(yi|xi) is the classifier distribution learned from the labeled set L and

p(yi|xi) is the true distribution that also considers an additional new class. Note

that the true distribution p(yi|xi) is unknown hence estimated using Dirichlet Pro-

cess assumption [Antoniak, 1974, Rasmussen, 2000] to account for xi belonging to

a new class. The iteration over yi and yj includes both known classes and a new

class.

5.3.5 PWrong1

Haines and Xiang [2014] proposed a method for querying instances based on mis-

classification probability:

P (Wrong|x) = 1− Pn(c′|x) (5.5)

c′ = argmax
c∈C

Pc(c|x) (5.6)

Where, Pn(c′|x) is the probability that x belongs to a class c′, where c′ could

be a new class. They used a Dirichlet Process [Ferguson, 1973] to account for a

new unknown class. Pc(c|x) is the probability calculated by a classifier, and does

not involve a new class. The intuition for this heuristic is that we want to query

instances that are not represented well by the current model. This can be measured

in at least two ways: the likelihood that an instance belongs to a new class and

how confident the current classifier is about the instance. If the probability of the

instance belonging to a new class is high, the probability of being wrong will also

go high. If probability of belonging to a new class is low but the classifier is wrong

about the prediction, the probability of being wrong will also go high. Choosing

an instance for which the current model is most wrong will provide the model the
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maximum information.

5.3.6 SVM and KDE Fusion1

Generative classifiers often perform well with small numbers of training examples.

On the other hand, discriminative classifiers require large numbers of examples;

that is, they perform well asymptotically. Hospedales et al. [2011] leveraged this

idea with KDE as the generative classifier and SVM as the discriminative classi-

fier. For query criteria, they used uncertainty and likelihood for SVM and KDE

respectively. They maintain a weight vector w for these two query criteria and

sample one query from the multinomial distribution k ∼ Mult(w) during query

time. After each query, they update the multinomial weights of the classifiers and

also update the corresponding classifier model.

5.3.7 Clustering

Another natural approach for querying instances for class discovery is based on

clustering techniques. Each cluster may correspond to a class. So, querying the

representative points from different clusters may reveal all of the classes quickly.

Here we present two approaches from Vatturi and Wong [2009].

5.3.7.1 HMS Outlierness

Vatturi and Wong [2009] used the Hierarchical Mean Shift procedure for rare cate-

gory detection. They repeatedly applied the Mean Shift algorithm with increasing

bandwidth to select cluster modes. Cluster modes are then used to query the oracle

for new class discovery. They used two different criteria for selecting which cluster

to query. The first one is based on outlierness. Outlierness criteria measures the

lifetime of a cluster, which is the range of the logarithmic bandwidth scale over

which a cluster survives (e.g., the difference between the logarithmic scale when the

cluster is formed and when the cluster is merged). For a cluster Ci, the outlierness

is measured as

Outliernessi =
lifetime of Ci

# of datapoints in Ci
. (5.7)
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The idea is that a cluster with long lifetime and a small number of points is

more likely to be an outlier cluster which may represent a rare class. The most

representative point in a cluster is queried, which is the point that moved the least

from the cluster center in terms of mean shift distance.

5.3.7.2 HMS Compactness and Isolation

The second criterion is based on the compactness and isolation [Leung et al., 2000]

of a cluster. Intuitively a cluster is well defined if withinness distance among points

of a cluster is small (e.g., the cluster is compact) and the betweenness distance is

large (e.g., the cluster is well isolated from other clusters):

isolation =

∑
x∈Ci exp(−||x− pi||

2/2h2)∑
x exp(−||x− pi||2/2h2)

(5.8)

compactness =

∑
x∈Ci exp(−||x− pi||

2/2h2)∑
x∈Ci

∑
j exp(−||x− pj||2/2h2)

. (5.9)

Vatturi and Wong [2009] combined isolation and compactness by adding them

together and used that as a single criterion to pick a cluster with the highest

compactness-isolation value. The query point is selected as the point with the

minimum mean shift distance from the cluster center. In both of these criteria, a

tie can happen, that is, we might have more than one cluster having same criterion

value. They used a metric called highest average distance (HAD) to break ties.

The idea is to calculate the distance between each cluster mode and the set of

points that are already labeled and query the cluster with the highest HAD.

5.3.8 Random1

To compare how different query criteria perform with a random method, we in-

cluded a random query criterion which picks instances uniformly from the pool of

instances that haven’t been queried. We ran this method 30 times and report the

average.
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Table 5.1: Summary of the original datasets

Dataset
# of

Features
# of

Classes
# of

examples
Smallest
class (%)

Largest
class (%)

Abalone 7 28 4177 0.02 16.50
Covertype 10 7 5000 3.58 24.98

Glass 10 6 214 4.21 35.51
Leaf 14 30 340 2.35 4.71

Letter
Recognition

16 26 3092 0.26 24.58

Yeast 8 10 1484 0.34 31.20

Table 5.2: Summary of the benchmark datasets

Dataset
# of

Benchmarks

# of
examples
(range)

Normalized
Entropy
(range)

Abalone 10 1351 - 2373 0.55 - 0.85
Covertype 10 1265 - 3685 0.09 - 1.00

Glass 10 54 - 191 0.53 - 1.00
Leaf 10 203 - 268 0.97 - 0.99

Letter
Recognition

10 594 - 2094 0.50 - 0.89

Yeast 10 375 - 1131 0.22 - 0.95

5.4 Empirical Evaluation

In this section we evaluate all the algorithms described in Section 5.3 on some stan-

dard datasets along with a suite of benchmarks. The benchmarks are constructed

by varying some dataset properties. The analogous approach [Emmott et al., 2015]

exists in the anomaly detection literature, where the authors systematically con-

structed a large number of benchmarks by varying different properties of datasets

that have potential effect on anomaly detection problem. Our goal is to observe if
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there is any property in the algorithms that also correlates with a dataset property.

5.4.1 Benchmark

We create a suite of benchmarks starting with several seed datasets from the UCI

machine learning repository [Lichman, 2013]. Table 5.1 shows the seed datasets

and their properties. Most of the datasets have been commonly used in the past on

similar tasks. We also choose some additional datasets that have a large number

of classes, since our main goal is to discover classes.

If a dataset contains instances uniformly from different classes, the entropy

of the dataset is high, and it’s easier for a class discovery algorithm to identify

the classes than within a dataset where class instances are imbalanced. It might

also depend on what underlying structure a class discovery algorithm is using, for

example, the clustering-based methods might detect classes with many examples

easily. On the other hand, anomaly detection-based methods might identify the

classes with few instances easily. This motivated us to pick the entropy as a

property of the datasets.

We seek to create a set of benchmakrs with normalized entropy that varies from

0.1 to 1 with an increment of 0.1. Normalized entropy is computed by dividing

the entropy (−
∑

i pi log(pi) where pi is the fraction of instances from class i) of a

dataset by the maximum possible entropy (when all the classes have same number

of instances). Assume that we have a dataset D, and C is the vector where each

element Ci represents the number of instances available from the ith class. We want

to construct a benchmark with a normalized entropy τ . We solve the following

constrained optimization problem to create a benchmark dataset where the number

instances from class i is Ni:

argmin
N

∣∣∣∣ E(N)

Emax(N)
− τ
∣∣∣∣− λ∑

i

Ni (5.10)

such that

min(Ci, 5) ≤ Ni ≤ Ci, (5.11)

where E(N) is the entropy with the number of instances N (Ni is the number
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Table 5.3: Normalized score under different evaluation metrics

25% 50% 75% 100% AUC Reward

IF (No Feedback) 0.630 0.479 0.473 0.572 0.880 0.797
IF (Feedback) 0.919 0.686 0.546 0.570 0.910 0.847
SVM Entropy 0.640 0.418 0.413 0.564 0.863 0.720

KDE Likelihood 0.774 0.810 0.780 0.687 0.953 0.918
DPEA 0.682 0.598 0.622 0.665 0.875 0.787

PWrong 0.674 0.683 0.745 0.750 0.935 0.901
SVM/KDE FUSION 0.668 0.603 0.571 0.642 0.892 0.800

Random 0.637 0.491 0.456 0.576 0.820 0.700
HMS-Out 0.877 0.766 0.658 0.794 0.950 0.902
HMS-CI 0.859 0.713 0.613 0.708 0.944 0.879

of instances from class i), Emax(N) is the maximum entropy (e.g. when all the

classes have equal number of instances), λ is the parameter that balances the

error to achieve the desired entropy τ vs. the number of examples we use from

the total number of instances that are available. We used a very small value for

the parameter λ = 1/(100 ∗M), where M is the total number of instances. This

ensures that we achieve normalized entropy very close to the τ and only after that

do we maximize the number of instances. We created a set of 10 benchmarks from

each dataset by sampling Ni number of examples from class i by varying τ from

0.1 to 1 with an increment of 0.1. Table 5.2 shows the summary of the benchmarks

created. Note that, due to the limitations of number of instances from each class,

we were not able to exactly achieve the target normalized entropy for all of the

datasets.

5.4.2 Experimental Setup

We employed the algorithms described in Section 5.3 on the original datasets shown

in Table 5.1 and on the constructed benchmarks shown in Table 5.2. All the al-

gorithms were allowed to make up to 200 oracle queries. Among these algorithms,

isolation forest is the only randomized algorithm, so we averaged over 10 runs

on each dataset. We ran isolation forest with 100 trees with a subsample size
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of 256. The HMS algorithms were run according to the setup described in Vat-

turi and Wong [2009]. For the rest of the algorithms the parameters were set

according to Hospedales et al. [2011] and Hospedales et al. [2012].

5.4.3 Results

Class Discovery Curve: To evaluate different algorithms, we computed the

number of classes an algorithm discovers within a given number of queries. We

plot this as a class discovery curve (CDC) where on the X axis we have the num-

ber of queries to the oracle and on the Y axis, the number of classes discovered

after making that many queries. Figures 5.1, 5.2 and 5.2 show the results of the

algorithms on the original datasets described in Table 5.1. In general, the hier-

archical mean shift algorithms are performing well in Abalone, Letterrec, Glass

and Covertype datasets and DPEA is performing better on the other two datasets

Leaf and Yeast. The HMS-Out and PWrong comes consistently near the top in

four of the datasets. The SVM-Entropy and the IF(No Feedback) methods come

near the bottom in four and two datasets respectively along with Random, which

comes bottom in three datasets. The Random query criteria perform very well in

the Leaf dataset, where the number of examples from different classes are almost

equal, and in the Covertype, dataset where the number of classes is very small. In

most of the datasets, the Random criterion seems equal or better than the SVM

Entropy criterion. One reason for this is that the SVM Entropy is probably trying

to learn the class boundary very well by making many queries from the same class

which eventually hurts its class discovery performance.

Area Under the Class Discovery Curve (AUC): To get a single metric

from a class discovery curve, we computed the area under the CDC curve and

normalized it with the best area under the curve possible by an oracle. The oracle

discovers one class on each query until all the classes are discovered. This gives a

score ranging from 0 to 1, where a score close to one means performance is close to

the oracle. In Figures 5.4, 5.5 and 5.6, we show results from the all 60 benchmark

datasets listed in Table 5.2, where on the X axis we plotted the normalized entropy

and on the Y axis the corresponding AUC achieved by each algorithm. To see if

performance increase correlates with increasing entropy, we fit a regression line for

each curve and report the slope of the lines in Table 5.4. We observe that most
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Table 5.4: Slopes of the fitted regression lines of AUC vs. entropy curves shown in
Figures 5.4, 5.5 and 5.6

Leaf Abalone Yeast
Letter

Recognition
Glass Covertype

IF (No Feedback) -1.38 0.34 0.20 0.35 0.08 -0.02
IF (Feedback) -0.37 0.34 0.25 0.33 0.07 0.04
SVM Entropy -1.25 0.60 0.30 0.34 -0.01 -0.14

KDE Likelihood 0.66 0.64 0.25 0.28 0.01 -0.06
DPEA 2.39 0.86 0.24 1.02 0.06 0.54

PWrong 0.31 0.68 0.20 0.28 0.00 -0.03
SVM/KDE FUSION 0.69 0.53 0.34 0.66 0.07 0.12

Random 1.03 0.94 0.51 0.94 0.11 0.58
HMS-Out -0.43 0.43 0.31 -0.14 0.11 0.07
HMS-CI -2.32 0.60 0.31 -0.12 0.12 -0.02

of the slopes are positive, which indicates increasing trend with the increasing

entropy. In the most of the datasets almost all of the algorithms show increasing

trend (e.g., in Abalone, Yeast, Letter Recognition and Glass datasets). With high

entropy, the datasets become easier since the number of instances for each class

become similar. The Random algorithm consistently shows the increasing trend

across all of the datasets, since the Random strategy tends to perform better when

class instances are balanced.

Discovering percentage of classes: To get a better picture of which algo-

rithm performs better, we compute several metrics: number of queries required

to discover 25%, 50%, 75% and 100% of the classes. We normalize them by the

best performing algorithm (e.g., the one that asked minimum number of queries

to discover a certain fraction of classes). This gives us a score of 1 for the best

algorithm and score relative to 1 for the others. This score is then averaged over

60 benchmark datasets, and the average is shown in Table 5.3. Isolation forest

with feedback performs best in discovering 25% of the classes. KDE Likelihood

performs better in discovering 50% and 75% of the classes, and HMS-out is best

for discovering all the classes. Since the isolation forest algorithm is an anomaly
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detection based algorithm, it might be finding the rare classes earlier but can’t get

to find the majority classes. This is hurting the performance later in the itera-

tions. A similar conclusion can be made for the KDE likelihood, which is another

anomaly detection-based approach. HMS-Out is finding all the classes much faster

than others, since it uses the clustering approach along with anomaly detection

criteria. It seems the clustering property is helping it to find the additional classes

quickly.

Normalized AUC: We normalized the area under the class discovery curve

by the best AUC and then plotted the average normalized AUC over all 60 bench-

mark datasets in the AUC column. KDE likelihood performs better than other

algorithms for this metric. HMS-out placed second.

Rare Class Discovery: The class discovery curve always gives a reward of 1

whenever an algorithm discovers a new class regardless of the class being rare or

not. To give more credit whenever a rare class is discovered we produce a different

class discovery curve where we give a reward of− log2(p) which is the number of bits

of information uncovered by discovering a class which has a fraction of instances

p. Similarly, we normalize this by the best performing algorithm to get a score

from 0 to 1. The Reward column shows the corresponding scores. KDE likelihood

performs better under this metric as well. We don’t observe much change in the

ranking of algorithms under the AUC column and the Reward column except that

PWrong becomes 3rd in the Reward column and 4th in the AUC column topping

over HMS-CI. This might be the cause of using clustering approach by the HMS-CI

which has an inherent bias to choose majority classes first.

The overall winner is the KDE likelihood algorithm, which wins 4 out of these

6 metrices. HMS-Out wins on discovering all the classes. HMS-out is also the

second place in 4 of the metrics. Interestingly, all the top performing algorithms

under different metrics are actually based on some kind of anomaly detection

technique which indicates that likelihood criteria are quite effective for discovering

new classes.

5.5 Summary

In this chapter we discussed the class discovery problem. We described several

algorithms for the class discovery problem that were borrowed from some other area
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of research like anomaly detection, clustering and rare category detection, etc. We

evaluated these algorithms on some standard datasets along with some constructed

benchmarks. Our evaluation showed that in general the likelihood criteria usually

used in anomaly detection techniques perform better than other approaches. In

future work, it would be interesting to include some other class discovery techniques

and evaluate them with a richer set of benchmarks that could be constructed by

some other appropriate dataset properties like isolation, compactness and so on.
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Figure 5.1: Class discovery curve for different algorithms on the Leaf and Abalone
datasets
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Figure 5.2: Class discovery curve for different algorithms on the Yeast and Letter
recognition datasets
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Figure 5.3: Class discovery curve for different algorithms on the Glass and Covertype
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Figure 5.5: Entropy vs. normalized AUC (area under the class discovery curve) for
different algorithms on Yeast and Letter recognition benchmark datasets
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Chapter 6: Conclusions and Future Work

In this dissertation we focused on the anomaly detection problem in general and

its potential application in computer security. We developed sample complexity

results for anomaly detection to understand why many detectors perform very well

with a small number of examples. This analysis unified a number of existing state-

of-the-art anomaly detectors into a single framework underlying different pattern

spaces, that is, all these algorithms works under the same principle except that

they focus on different pattern spaces.

We proposed explanation ideas in terms of input features that explain why

an anomaly detector choose a specific point as anomalous. Explanation helps the

end-user analysts in their investigation of anomalies and also provide some reasons

in justifying whether the detector picked the anomalies for the right reasons.

We then developed some approaches to incorporate the analyst’s feedback to

improve the performance of the anomaly detector. We showed the effectiveness of

the explanation and feedback approaches on some red team attack data as well as

on some real world network security data. We also measured their performance

on a large number of benchmark datasets to show their superior performance over

other state of the art algorithms.

Finally, we explored the class discovery problem and described different ap-

proaches from the literature and analyzed their empirical performance on a suite

of benchmark datasets that are constructed by varying some dataset properties.

We then compare the performance of the various algorithms and identify which

one performs better empirically.

In the future, it would be interesting to discover some other pattern spaces

where other state-of-the-art anomaly detectors operate and provide a thorough

comparison in terms of their sample complexities. For the explanation work, it

would be interesting to provide some more fine-grained explanation than the fea-

tures along with their quantitative contribution. That is, if we could decompose

the anomaly score into the combination of multiple explanations, where each expla-

nation is intuitive to a human. Clustering anomalies based on their explanations
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would also be interesting, since the resulting cluster could represent a class of

anomalies which might correspond to a specific security attack.

For the feedback work, it would be interesting to handle noisy feedback, since

in practice the analysts sometimes are not entirely sure of an entity whether it’s

actually part of an attack due to lack of information or time constraints. The

incorporation of feedback could be extended to other anomaly detectors whose

score function can’t be represented as a linear function. For the class discovery

algorithms, it would be interesting to get more insight into which algorithm per-

forms better in what situation or under what properties of a dataset. To that

purpose, a large number of benchmark datasets can be constructed by identifying

some additional key dataset properties like compactness, isolation, and so on.
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Appendix A: Proofs

A.1 NP-hardness of SFE-Decide

We now prove that the decision problem, SFE-Decide, which corresponds to the

optimization problem in Equation 3.3, is NP-hard.

Proof. To prove that SFE-Decide is NP-hard we reduce the well known NP-Complete

problem Vertex Cover to SFE-Decide.

Vertex Cover: Does there exist a vertex cover of size ≤ k in graph G = (V , E)

SFE-Decide: Does there exist an SFE E for instance x and density f that

satisfies ∑
α

min{i : f(xEi) < τ(Ei, α)}p(α) ≤ t.

Reduction. The basic idea of the reduction is to encode the graph G = (V , E)

into the instance x as a vertex-edge incidence matrix. We view x as a |V| dimen-

sional feature vector with each feature denoted by xi. Each feature is an |E|-bit

integer where bit j of feature i, denoted by xij, is defined as:

xij =

{
1 if vertex Vi is incident on edge Ej
0 otherwise

Since x is integer-valued, we construct the marginal distribution function f(xs) as

a discrete distribution (or probability function) as follows:

f(xs) =


1
C

if
∑
j

I(
∑
i∈s
xij > 0) < |E|

0 otherwise

Here, C is a normalizing constant and I is an indicator function. Intuitively,

f(xs) is defined to be a uniform distribution over all possible values of xs that

correspond to a vertex cover of the graph. To see this, note that the summation
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∑
j I(
∑

i∈s xij > 0) is computing the number of edges covered by the set of vertices

in s. We say a value of xs is valid if this summation exactly equals the number of

edges.

Continuing the reduction we set t = k, τ(s, α) = 1
C

and

p(α) =

{
1 if α = α0

0 otherwise

where α0 is a constant. Now, we observe that by the construction of p(α) as a

deterministic distribution, SFE-Decide no longer involves a summation over α

and can be simplified to the following problem:

Does there exist an SFE E satisfying min{i : f(xEi) <
1
C
} ≤ t

Now, we first show that a vertex cover of size ≤ k in G → existence of an SFE

E satisfying min{i : f(xEi) <
1
C
} ≤ t. Suppose, |s| ≤ k is the set of vertices

forming the vertex cover in G. Then, by construction
∑

j I(
∑

i∈s xij > 0) = |E| i.e.

f(xs) = 0. We can now construct an SFE E by setting the prefix Ei = s and

filling the rest of the features arbitrarily with the remaining features. Its easy to

see that such an SFE E satisfies min{i : f(xEi) <
1
C
} ≤ t since |Ei| ≤ t. Hence, E

is an SFE corresponding to the vertex cover s.

We now prove the other direction: The existence of an SFE E satisfying

min{i : f(xEi) <
1
C
} ≤ t → existence of a vertex cover of size ≤ k in G. Since

min{i : f(xEi) <
1
C
} ≤ t, the inequality f(xEi) <

1
C

is satisfied for some i ≤ t.

Since t = k, we have a feature subset Ei such that |Ei| ≤ k. Now, we show

that Ei is also a vertex cover in G. Since f(xEi) <
1
C

we have f(x,Ei) = 0, i.e.,∑
j I(
∑

p∈Ei xpj > 0) = |E|. Hence, for each j the indicator function is true which

implies edge Ej is covered by some vertex in Ei. Hence, Ei is a vertex cover in G

corresponding to SFE E with |Ei| ≤ k.




