41,766 research outputs found

    Analyzing collaborative learning processes automatically

    Get PDF
    In this article we describe the emerging area of text classification research focused on the problem of collaborative learning process analysis both from a broad perspective and more specifically in terms of a publicly available tool set called TagHelper tools. Analyzing the variety of pedagogically valuable facets of learners’ interactions is a time consuming and effortful process. Improving automated analyses of such highly valued processes of collaborative learning by adapting and applying recent text classification technologies would make it a less arduous task to obtain insights from corpus data. This endeavor also holds the potential for enabling substantially improved on-line instruction both by providing teachers and facilitators with reports about the groups they are moderating and by triggering context sensitive collaborative learning support on an as-needed basis. In this article, we report on an interdisciplinary research project, which has been investigating the effectiveness of applying text classification technology to a large CSCL corpus that has been analyzed by human coders using a theory-based multidimensional coding scheme. We report promising results and include an in-depth discussion of important issues such as reliability, validity, and efficiency that should be considered when deciding on the appropriateness of adopting a new technology such as TagHelper tools. One major technical contribution of this work is a demonstration that an important piece of the work towards making text classification technology effective for this purpose is designing and building linguistic pattern detectors, otherwise known as features, that can be extracted reliably from texts and that have high predictive power for the categories of discourse actions that the CSCL community is interested in

    Hierarchical testing designs for pattern recognition

    Full text link
    We explore the theoretical foundations of a ``twenty questions'' approach to pattern recognition. The object of the analysis is the computational process itself rather than probability distributions (Bayesian inference) or decision boundaries (statistical learning). Our formulation is motivated by applications to scene interpretation in which there are a great many possible explanations for the data, one (``background'') is statistically dominant, and it is imperative to restrict intensive computation to genuinely ambiguous regions. The focus here is then on pattern filtering: Given a large set Y of possible patterns or explanations, narrow down the true one Y to a small (random) subset \hat Y\subsetY of ``detected'' patterns to be subjected to further, more intense, processing. To this end, we consider a family of hypothesis tests for Y\in A versus the nonspecific alternatives Y\in A^c. Each test has null type I error and the candidate sets A\subsetY are arranged in a hierarchy of nested partitions. These tests are then characterized by scope (|A|), power (or type II error) and algorithmic cost. We consider sequential testing strategies in which decisions are made iteratively, based on past outcomes, about which test to perform next and when to stop testing. The set \hat Y is then taken to be the set of patterns that have not been ruled out by the tests performed. The total cost of a strategy is the sum of the ``testing cost'' and the ``postprocessing cost'' (proportional to |\hat Y|) and the corresponding optimization problem is analyzed.Comment: Published at http://dx.doi.org/10.1214/009053605000000174 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Linking recorded data with emotive and adaptive computing in an eHealth environment

    Get PDF
    Telecare, and particularly lifestyle monitoring, currently relies on the ability to detect and respond to changes in individual behaviour using data derived from sensors around the home. This means that a significant aspect of behaviour, that of an individuals emotional state, is not accounted for in reaching a conclusion as to the form of response required. The linked concepts of emotive and adaptive computing offer an opportunity to include information about emotional state and the paper considers how current developments in this area have the potential to be integrated within telecare and other areas of eHealth. In doing so, it looks at the development of and current state of the art of both emotive and adaptive computing, including its conceptual background, and places them into an overall eHealth context for application and development

    Adversarial Sample Detection for Deep Neural Network through Model Mutation Testing

    Full text link
    Deep neural networks (DNN) have been shown to be useful in a wide range of applications. However, they are also known to be vulnerable to adversarial samples. By transforming a normal sample with some carefully crafted human imperceptible perturbations, even highly accurate DNN make wrong decisions. Multiple defense mechanisms have been proposed which aim to hinder the generation of such adversarial samples. However, a recent work show that most of them are ineffective. In this work, we propose an alternative approach to detect adversarial samples at runtime. Our main observation is that adversarial samples are much more sensitive than normal samples if we impose random mutations on the DNN. We thus first propose a measure of `sensitivity' and show empirically that normal samples and adversarial samples have distinguishable sensitivity. We then integrate statistical hypothesis testing and model mutation testing to check whether an input sample is likely to be normal or adversarial at runtime by measuring its sensitivity. We evaluated our approach on the MNIST and CIFAR10 datasets. The results show that our approach detects adversarial samples generated by state-of-the-art attacking methods efficiently and accurately.Comment: Accepted by ICSE 201
    • …
    corecore