1,309 research outputs found

    Deep Character-Level Click-Through Rate Prediction for Sponsored Search

    Full text link
    Predicting the click-through rate of an advertisement is a critical component of online advertising platforms. In sponsored search, the click-through rate estimates the probability that a displayed advertisement is clicked by a user after she submits a query to the search engine. Commercial search engines typically rely on machine learning models trained with a large number of features to make such predictions. This is inevitably requires a lot of engineering efforts to define, compute, and select the appropriate features. In this paper, we propose two novel approaches (one working at character level and the other working at word level) that use deep convolutional neural networks to predict the click-through rate of a query-advertisement pair. Specially, the proposed architectures only consider the textual content appearing in a query-advertisement pair as input, and produce as output a click-through rate prediction. By comparing the character-level model with the word-level model, we show that language representation can be learnt from scratch at character level when trained on enough data. Through extensive experiments using billions of query-advertisement pairs of a popular commercial search engine, we demonstrate that both approaches significantly outperform a baseline model built on well-selected text features and a state-of-the-art word2vec-based approach. Finally, by combining the predictions of the deep models introduced in this study with the prediction of the model in production of the same commercial search engine, we significantly improve the accuracy and the calibration of the click-through rate prediction of the production system.Comment: SIGIR2017, 10 page

    Lifelong Sequential Modeling with Personalized Memorization for User Response Prediction

    Full text link
    User response prediction, which models the user preference w.r.t. the presented items, plays a key role in online services. With two-decade rapid development, nowadays the cumulated user behavior sequences on mature Internet service platforms have become extremely long since the user's first registration. Each user not only has intrinsic tastes, but also keeps changing her personal interests during lifetime. Hence, it is challenging to handle such lifelong sequential modeling for each individual user. Existing methodologies for sequential modeling are only capable of dealing with relatively recent user behaviors, which leaves huge space for modeling long-term especially lifelong sequential patterns to facilitate user modeling. Moreover, one user's behavior may be accounted for various previous behaviors within her whole online activity history, i.e., long-term dependency with multi-scale sequential patterns. In order to tackle these challenges, in this paper, we propose a Hierarchical Periodic Memory Network for lifelong sequential modeling with personalized memorization of sequential patterns for each user. The model also adopts a hierarchical and periodical updating mechanism to capture multi-scale sequential patterns of user interests while supporting the evolving user behavior logs. The experimental results over three large-scale real-world datasets have demonstrated the advantages of our proposed model with significant improvement in user response prediction performance against the state-of-the-arts.Comment: SIGIR 2019. Reproducible codes and datasets: https://github.com/alimamarankgroup/HPM

    Session-based Recommendation with Graph Neural Networks

    Full text link
    The problem of session-based recommendation aims to predict user actions based on anonymous sessions. Previous methods model a session as a sequence and estimate user representations besides item representations to make recommendations. Though achieved promising results, they are insufficient to obtain accurate user vectors in sessions and neglect complex transitions of items. To obtain accurate item embedding and take complex transitions of items into account, we propose a novel method, i.e. Session-based Recommendation with Graph Neural Networks, SR-GNN for brevity. In the proposed method, session sequences are modeled as graph-structured data. Based on the session graph, GNN can capture complex transitions of items, which are difficult to be revealed by previous conventional sequential methods. Each session is then represented as the composition of the global preference and the current interest of that session using an attention network. Extensive experiments conducted on two real datasets show that SR-GNN evidently outperforms the state-of-the-art session-based recommendation methods consistently.Comment: 9 pages, 4 figures, accepted by AAAI Conference on Artificial Intelligence (AAAI-19

    Neural Attentive Session-based Recommendation

    Full text link
    Given e-commerce scenarios that user profiles are invisible, session-based recommendation is proposed to generate recommendation results from short sessions. Previous work only considers the user's sequential behavior in the current session, whereas the user's main purpose in the current session is not emphasized. In this paper, we propose a novel neural networks framework, i.e., Neural Attentive Recommendation Machine (NARM), to tackle this problem. Specifically, we explore a hybrid encoder with an attention mechanism to model the user's sequential behavior and capture the user's main purpose in the current session, which are combined as a unified session representation later. We then compute the recommendation scores for each candidate item with a bi-linear matching scheme based on this unified session representation. We train NARM by jointly learning the item and session representations as well as their matchings. We carried out extensive experiments on two benchmark datasets. Our experimental results show that NARM outperforms state-of-the-art baselines on both datasets. Furthermore, we also find that NARM achieves a significant improvement on long sessions, which demonstrates its advantages in modeling the user's sequential behavior and main purpose simultaneously.Comment: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. arXiv admin note: text overlap with arXiv:1511.06939, arXiv:1606.08117 by other author

    Context-aware Sequential Recommendation

    Full text link
    Since sequential information plays an important role in modeling user behaviors, various sequential recommendation methods have been proposed. Methods based on Markov assumption are widely-used, but independently combine several most recent components. Recently, Recurrent Neural Networks (RNN) based methods have been successfully applied in several sequential modeling tasks. However, for real-world applications, these methods have difficulty in modeling the contextual information, which has been proved to be very important for behavior modeling. In this paper, we propose a novel model, named Context-Aware Recurrent Neural Networks (CA-RNN). Instead of using the constant input matrix and transition matrix in conventional RNN models, CA-RNN employs adaptive context-specific input matrices and adaptive context-specific transition matrices. The adaptive context-specific input matrices capture external situations where user behaviors happen, such as time, location, weather and so on. And the adaptive context-specific transition matrices capture how lengths of time intervals between adjacent behaviors in historical sequences affect the transition of global sequential features. Experimental results show that the proposed CA-RNN model yields significant improvements over state-of-the-art sequential recommendation methods and context-aware recommendation methods on two public datasets, i.e., the Taobao dataset and the Movielens-1M dataset.Comment: IEEE International Conference on Data Mining (ICDM) 2016, to apea

    DeepFM: A Factorization-Machine based Neural Network for CTR Prediction

    Full text link
    Learning sophisticated feature interactions behind user behaviors is critical in maximizing CTR for recommender systems. Despite great progress, existing methods seem to have a strong bias towards low- or high-order interactions, or require expertise feature engineering. In this paper, we show that it is possible to derive an end-to-end learning model that emphasizes both low- and high-order feature interactions. The proposed model, DeepFM, combines the power of factorization machines for recommendation and deep learning for feature learning in a new neural network architecture. Compared to the latest Wide \& Deep model from Google, DeepFM has a shared input to its "wide" and "deep" parts, with no need of feature engineering besides raw features. Comprehensive experiments are conducted to demonstrate the effectiveness and efficiency of DeepFM over the existing models for CTR prediction, on both benchmark data and commercial data
    corecore