5 research outputs found

    Code Prediction by Feeding Trees to Transformers

    Full text link
    We advance the state-of-the-art in the accuracy of code prediction (next token prediction) used in autocomplete systems. First, we report that using the recently proposed Transformer architecture even out-of-the-box outperforms previous neural and non-neural systems for code prediction. We then show that by making the Transformer architecture aware of the syntactic structure of code, we further increase the margin by which a Transformer-based system outperforms previous systems. With this, it outperforms the accuracy of an RNN-based system (similar to Hellendoorn et al. 2018) by 18.3\%, the Deep3 system (Raychev et al 2016) by 14.1\%, and an adaptation of Code2Seq (Alon et al., 2018) for code prediction by 14.4\%. We present in the paper several ways of communicating the code structure to the Transformer, which is fundamentally built for processing sequence data. We provide a comprehensive experimental evaluation of our proposal, along with alternative design choices, on a standard Python dataset, as well as on a Facebook internal Python corpus. Our code and data preparation pipeline will be available in open source

    Code Completion by Modeling Flattened Abstract Syntax Trees as Graphs

    Full text link
    Code completion has become an essential component of integrated development environments. Contemporary code completion methods rely on the abstract syntax tree (AST) to generate syntactically correct code. However, they cannot fully capture the sequential and repetitive patterns of writing code and the structural information of the AST. To alleviate these problems, we propose a new code completion approach named CCAG, which models the flattened sequence of a partial AST as an AST graph. CCAG uses our proposed AST Graph Attention Block to capture different dependencies in the AST graph for representation learning in code completion. The sub-tasks of code completion are optimized via multi-task learning in CCAG, and the task balance is automatically achieved using uncertainty without the need to tune task weights. The experimental results show that CCAG has superior performance than state-of-the-art approaches and it is able to provide intelligent code completion.Comment: Accepted in AAAI 2021. This version contains the appendix for the derivation of Eq. 1
    corecore