9 research outputs found

    Separations of Non-monotonic Randomness Notions

    Get PDF
    In the theory of algorithmic randomness, several notions of random sequence are defined via a game-theoretic approach, and the notions that received most attention are perhaps Martin-L"of randomness and computable randomness. The latter notion was introduced by Schnorr and is rather natural: an infinite binary sequence is computably random if no total computable strategy succeeds on it by betting on bits in order. However, computably random sequences can have properties that one may consider to be incompatible with being random, in particular, there are computably random sequences that are highly compressible. The concept of Martin-L"of randomness is much better behaved in this and other respects, on the other hand its definition in terms of martingales is considerably less natural. Muchnik, elaborating on ideas of Kolmogorov and Loveland, refined Schnorr\u27s model by also allowing non-monotonic strategies, i.e. strategies that do not bet on bits in order. The subsequent ``non-monotonic\u27\u27 notion of randomness, now called Kolmogorov-Loveland-randomness, has been shown to be quite close to Martin-L"of randomness, but whether these two classes coincide remains a fundamental open question. In order to get a better understanding of non-monotonic randomness notions, Miller and Nies introduced some interesting intermediate concepts, where one only allows non-adaptive strategies, i.e., strategies that can still bet non-monotonically, but such that the sequence of betting positions is known in advance (and computable). Recently, these notions were shown by Kastermans and Lempp to differ from Martin-L"of randomness. We continue the study of the non-monotonic randomness notions introduced by Miller and Nies and obtain results about the Kolmogorov complexities of initial segments that may and may not occur for such sequences, where these results then imply a complete classification of these randomness notions by order of strength

    Kolmogorov complexity

    Get PDF
    In dieser Dissertation werden neue Ergebnisse über Kolmogorovkomplexität diskutiert. Ihr erster Teil konzentriert sich auf das Studium von Kolmogorovkomplexität ohne Zeitschranken. Hier beschäftigen wir uns mit dem Konzept nicht-monotoner Zufälligkeit, d.h. Zufälligkeit, die von Martingalen charakterisiert wird, die in nicht-monotoner Reihenfolge wetten dürfen. Wir werden in diesem Zusammenhang eine Reihe von Zufälligkeitsklassen einführen, und diese dann von einander separieren. Wir präsentieren auß erdem einen systematischen überblick über verschiedene Traceability-Begriffe und charakterisieren diese durch (Auto-)Komplexitätsbegriffe. Traceabilities sind eine Gruppe von Begriffen, die ausdrücken, dass eine Menge beinahe berechenbar ist. Der zweite Teil dieses Dokuments beschäftigt sich mit dem Thema zeitbeschränkter Kolmogorovkomplexität. Zunächst untersuchen wir den Unterschied zwischen zwei Arten, ein Wort zu beschreiben: Die Komplexität, es genau genug zu beschreiben, damit es von anderen Wörter unterschieden werden kann; sowie die Komplexität, es genau genug zu beschreiben, damit das Wort aus der Beschreibung tatsächlich generiert werden kann. Diese Unterscheidung ist im Falle zeitunbeschränkter Kolmogorovkomplexität nicht von Bedeutung; sobald wir jedoch Zeitschranken einführen, wird sie essentiell. Als nächstes führen wir den Begriff der Tiefe ein und beweisen ein ihn betreffendes Dichotomieresultat, das in seiner Struktur an Kummers bekanntes Gap-Theorem erinnert. Zu guter Letzt betrachten wir den wichtigen Begriff der Solovayfunktionen. Hierbei handelt es sich um berechenbare obere Schranken der Kolmogorovkomplexität, die unendlich oft scharf sind. Wir benutzen sie, um in einem gewissen Zusammenhang Martin-Löf-Zufälligkeit zu charakterisieren, und um eine Charakterisierung von Jump-Traceability anzugeben

    Algorithmic randomness for Doob's martingale convergence theorem in continuous time

    Full text link
    We study Doob's martingale convergence theorem for computable continuous time martingales on Brownian motion, in the context of algorithmic randomness. A characterization of the class of sample points for which the theorem holds is given. Such points are given the name of Doob random points. It is shown that a point is Doob random if its tail is computably random in a certain sense. Moreover, Doob randomness is strictly weaker than computable randomness and is incomparable with Schnorr randomness

    Separations of non-monotonic randomness notions

    No full text
    corecore