542 research outputs found

    Complexity of optimizing over the integers

    Full text link
    In the first part of this paper, we present a unified framework for analyzing the algorithmic complexity of any optimization problem, whether it be continuous or discrete in nature. This helps to formalize notions like "input", "size" and "complexity" in the context of general mathematical optimization, avoiding context dependent definitions which is one of the sources of difference in the treatment of complexity within continuous and discrete optimization. In the second part of the paper, we employ the language developed in the first part to study information theoretic and algorithmic complexity of {\em mixed-integer convex optimization}, which contains as a special case continuous convex optimization on the one hand and pure integer optimization on the other. We strive for the maximum possible generality in our exposition. We hope that this paper contains material that both continuous optimizers and discrete optimizers find new and interesting, even though almost all of the material presented is common knowledge in one or the other community. We see the main merit of this paper as bringing together all of this information under one unifying umbrella with the hope that this will act as yet another catalyst for more interaction across the continuous-discrete divide. In fact, our motivation behind Part I of the paper is to provide a common language for both communities

    Signed Tropical Convexity

    Get PDF
    We establish a new notion of tropical convexity for signed tropical numbers. We provide several equivalent descriptions involving balance relations and intersections of open halfspaces as well as the image of a union of polytopes over Puiseux series and hyperoperations. Along the way, we deduce a new Farkas\u27 lemma and Fourier-Motzkin elimination without the non-negativity restriction on the variables. This leads to a Minkowski-Weyl theorem for polytopes over the signed tropical numbers

    Helly-type problems

    Get PDF
    In this paper we present a variety of problems in the interface between combinatorics and geometry around the theorems of Helly, Radon, Carathéodory, and Tverberg. Through these problems we describe the fascinating area of Helly-type theorems and explain some of their main themes and goals

    Sublinearly Morse Geodesics in CAT(0) Spaces: Lower Divergence and Hyperplane Characterization

    Full text link
    We introduce the notion of k-lower divergence for geodesic rays in CAT(0) spaces. Building on the work of Charney and Sultan we give various characterizations of k-contracting geodesic rays using k-lower divergence and k-slim triangles. We also characterize k-contracting geodesic rays in CAT(0) cube complexes using sequences of well-separated hyperplanes.Comment: 30 page

    Efficient Optimal Learning for Contextual Bandits

    Full text link
    We address the problem of learning in an online setting where the learner repeatedly observes features, selects among a set of actions, and receives reward for the action taken. We provide the first efficient algorithm with an optimal regret. Our algorithm uses a cost sensitive classification learner as an oracle and has a running time polylog(N)\mathrm{polylog}(N), where NN is the number of classification rules among which the oracle might choose. This is exponentially faster than all previous algorithms that achieve optimal regret in this setting. Our formulation also enables us to create an algorithm with regret that is additive rather than multiplicative in feedback delay as in all previous work
    • …
    corecore