163 research outputs found

    Fat Polygonal Partitions with Applications to Visualization and Embeddings

    Get PDF
    Let T\mathcal{T} be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T\mathcal{T} is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high. We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes. We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in Rd\mathbb{R}^d. We use these partitions with slack for embedding ultrametrics into dd-dimensional Euclidean space: we give a polylog(Δ)\mathop{\rm polylog}(\Delta)-approximation algorithm for embedding nn-point ultrametrics into Rd\mathbb{R}^d with minimum distortion, where Δ\Delta denotes the spread of the metric, i.e., the ratio between the largest and the smallest distance between two points. The previously best-known approximation ratio for this problem was polynomial in nn. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio.Comment: 26 page

    The Skip Quadtree: A Simple Dynamic Data Structure for Multidimensional Data

    Full text link
    We present a new multi-dimensional data structure, which we call the skip quadtree (for point data in R^2) or the skip octree (for point data in R^d, with constant d>2). Our data structure combines the best features of two well-known data structures, in that it has the well-defined "box"-shaped regions of region quadtrees and the logarithmic-height search and update hierarchical structure of skip lists. Indeed, the bottom level of our structure is exactly a region quadtree (or octree for higher dimensional data). We describe efficient algorithms for inserting and deleting points in a skip quadtree, as well as fast methods for performing point location and approximate range queries.Comment: 12 pages, 3 figures. A preliminary version of this paper appeared in the 21st ACM Symp. Comp. Geom., Pisa, 2005, pp. 296-30

    Higher Dimensional Coulomb Gases and Renormalized Energy Functionals

    Get PDF
    We consider a classical system of n charged particles in an external confining potential, in any dimension d larger than 2. The particles interact via pairwise repulsive Coulomb forces and the coupling parameter scales like the inverse of n (mean-field scaling). By a suitable splitting of the Hamiltonian, we extract the next to leading order term in the ground state energy, beyond the mean-field limit. We show that this next order term, which characterizes the fluctuations of the system, is governed by a new "renormalized energy" functional providing a way to compute the total Coulomb energy of a jellium (i.e. an infinite set of point charges screened by a uniform neutralizing background), in any dimension. The renormalization that cuts out the infinite part of the energy is achieved by smearing out the point charges at a small scale, as in Onsager's lemma. We obtain consequences for the statistical mechanics of the Coulomb gas: next to leading order asymptotic expansion of the free energy or partition function, characterizations of the Gibbs measures, estimates on the local charge fluctuations and factorization estimates for reduced densities. This extends results of Sandier and Serfaty to dimension higher than two by an alternative approach.Comment: Structure has slightly changed, details and corrections have been added to some of the proof

    Maximal stream and minimal cutset for first passage percolation through a domain of Rd\mathbb{R}^d

    Full text link
    We consider the standard first passage percolation model in the rescaled graph Zd/n\mathbb{Z}^d/n for d2d\geq2 and a domain Ω\Omega of boundary Γ\Gamma in Rd\mathbb{R}^d. Let Γ1\Gamma ^1 and Γ2\Gamma ^2 be two disjoint open subsets of Γ\Gamma, representing the parts of Γ\Gamma through which some water can enter and escape from Ω\Omega. A law of large numbers for the maximal flow from Γ1\Gamma ^1 to Γ2\Gamma ^2 in Ω\Omega is already known. In this paper we investigate the asymptotic behavior of a maximal stream and a minimal cutset. A maximal stream is a vector measure μnmax\vec{\mu}_n^{\max} that describes how the maximal amount of fluid can cross Ω\Omega. Under conditions on the regularity of the domain and on the law of the capacities of the edges, we prove that the sequence (μnmax)n1(\vec{\mu}_n^{\max})_{n\geq1} converges a.s. to the set of the solutions of a continuous deterministic problem of maximal stream in an anisotropic network. A minimal cutset can been seen as the boundary of a set EnminE_n^{\min} that separates Γ1\Gamma ^1 from Γ2\Gamma ^2 in Ω\Omega and whose random capacity is minimal. Under the same conditions, we prove that the sequence (Enmin)n1(E_n^{\min})_{n\geq1} converges toward the set of the solutions of a continuous deterministic problem of minimal cutset. We deduce from this a continuous deterministic max-flow min-cut theorem and a new proof of the law of large numbers for the maximal flow. This proof is more natural than the existing one, since it relies on the study of maximal streams and minimal cutsets, which are the pertinent objects to look at.Comment: Published in at http://dx.doi.org/10.1214/13-AOP851 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Fat polygonal partitions with applications to visualization and embeddings

    Get PDF
    Let T be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high. We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes. We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in Rd. We use these partitions with slack for embedding ultrametrics into d-dimensional Euclidean space: we give a polylog(¿)-approximation algorithm for embedding n-point ultrametrics into Rd with minimum distortion, where ¿ denotes the spread of the metric. The previously best-known approximation ratio for this problem was polynomial in n. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio
    corecore