1,249 research outputs found

    Separating linear forms and Rational Univariate Representations of bivariate systems

    Get PDF
    International audienceWe address the problem of solving systems of bivariate polynomials with integer coefficients. We first present an algorithm for computing a separating linear form of such systems, that is a linear combination of the variables that takes different values when evaluated at distinct (complex) solutions of the system. In other words, a separating linear form defines a shear of the coordinate system that sends the algebraic system in generic position, in the sense that no two distinct solutions are vertically aligned. The computation of such linear forms is at the core of most algorithms that solve algebraic systems by computing rational parameterizations of the solutions and, moreover, the computation of a separating linear form is the bottleneck of these algorithms, in terms of worst-case bit complexity. Given two bivariate polynomials of total degree at most dd with integer coefficients of bitsize at most~τ\tau, our algorithm computes a separating linear form {of bitsize O(logd)O(\log d)} in \comp\ bit operations in the worst case, which decreases by a factor d2d^2 the best known complexity for this problem (where \sO refers to the complexity where polylogarithmic factors are omitted and OBO_B refers to the bit complexity). We then present simple polynomial formulas for the Rational Univariate Representations (RURs) of such systems. {This yields that, given a separating linear form of bitsize O(logd)O(\log d), the corresponding RUR can be computed in worst-case bit complexity \sOB(d^7+d^6\tau) and that its coefficients have bitsize \sO(d^2+d\tau).} We show in addition that isolating boxes of the solutions of the system can be computed from the RUR with \sOB(d^{8}+d^7\tau) bit operations in the worst case. Finally, we show how a RUR can be used to evaluate the sign of a bivariate polynomial (of degree at most dd and bitsize at most τ\tau) at one real solution of the system in \sOB(d^{8}+d^7\tau) bit operations and at all the Θ(d2)\Theta(d^2) real solutions in only O(d)O(d) times that for one solution

    Improved algorithm for computing separating linear forms for bivariate systems

    Get PDF
    We address the problem of computing a linear separating form of a system of two bivariate polynomials with integer coefficients, that is a linear combination of the variables that takes different values when evaluated at the distinct solutions of the system. The computation of such linear forms is at the core of most algorithms that solve algebraic systems by computing rational parameterizations of the solutions and this is the bottleneck of these algorithms in terms of worst-case bit complexity. We present for this problem a new algorithm of worst-case bit complexity \sOB(d^7+d^6\tau) where dd and τ\tau denote respectively the maximum degree and bitsize of the input (and where \sO refers to the complexity where polylogarithmic factors are omitted and OBO_B refers to the bit complexity). This algorithm simplifies and decreases by a factor dd the worst-case bit complexity presented for this problem by Bouzidi et al. \cite{bouzidiJSC2014a}. This algorithm also yields, for this problem, a probabilistic Las-Vegas algorithm of expected bit complexity \sOB(d^5+d^4\tau).Comment: ISSAC - 39th International Symposium on Symbolic and Algebraic Computation (2014

    On the complexity of computing with zero-dimensional triangular sets

    Get PDF
    We study the complexity of some fundamental operations for triangular sets in dimension zero. Using Las-Vegas algorithms, we prove that one can perform such operations as change of order, equiprojectable decomposition, or quasi-inverse computation with a cost that is essentially that of modular composition. Over an abstract field, this leads to a subquadratic cost (with respect to the degree of the underlying algebraic set). Over a finite field, in a boolean RAM model, we obtain a quasi-linear running time using Kedlaya and Umans' algorithm for modular composition. Conversely, we also show how to reduce the problem of modular composition to change of order for triangular sets, so that all these problems are essentially equivalent. Our algorithms are implemented in Maple; we present some experimental results

    Symbolic-Numeric Tools for Analytic Combinatorics in Several Variables

    Full text link
    Analytic combinatorics studies the asymptotic behaviour of sequences through the analytic properties of their generating functions. This article provides effective algorithms required for the study of analytic combinatorics in several variables, together with their complexity analyses. Given a multivariate rational function we show how to compute its smooth isolated critical points, with respect to a polynomial map encoding asymptotic behaviour, in complexity singly exponential in the degree of its denominator. We introduce a numerical Kronecker representation for solutions of polynomial systems with rational coefficients and show that it can be used to decide several properties (0 coordinate, equal coordinates, sign conditions for real solutions, and vanishing of a polynomial) in good bit complexity. Among the critical points, those that are minimal---a property governed by inequalities on the moduli of the coordinates---typically determine the dominant asymptotics of the diagonal coefficient sequence. When the Taylor expansion at the origin has all non-negative coefficients (known as the `combinatorial case') and under regularity conditions, we utilize this Kronecker representation to determine probabilistically the minimal critical points in complexity singly exponential in the degree of the denominator, with good control over the exponent in the bit complexity estimate. Generically in the combinatorial case, this allows one to automatically and rigorously determine asymptotics for the diagonal coefficient sequence. Examples obtained with a preliminary implementation show the wide applicability of this approach.Comment: As accepted to proceedings of ISSAC 201

    On the Complexity of Solving Zero-Dimensional Polynomial Systems via Projection

    Full text link
    Given a zero-dimensional polynomial system consisting of n integer polynomials in n variables, we propose a certified and complete method to compute all complex solutions of the system as well as a corresponding separating linear form l with coefficients of small bit size. For computing l, we need to project the solutions into one dimension along O(n) distinct directions but no further algebraic manipulations. The solutions are then directly reconstructed from the considered projections. The first step is deterministic, whereas the second step uses randomization, thus being Las-Vegas. The theoretical analysis of our approach shows that the overall cost for the two problems considered above is dominated by the cost of carrying out the projections. We also give bounds on the bit complexity of our algorithms that are exclusively stated in terms of the number of variables, the total degree and the bitsize of the input polynomials

    Certified Algorithms for proving the structural stability of two dimensional systems possibly with parameters

    Get PDF
    International audienceIn [1], a new method for testing the structural stability of multidimensional systems has been presented. The key idea of this method is to reduce the problem of testing the structural stability to that of deciding if an algebraic set has real points. Following the same idea, we consider in this work the specific case of two-dimensional systems and focus on the practical efficiency aspect. For such systems, the problem of testing the stability is reduced to that of deciding if a bivariate algebraic system with finitely many solutions has real ones. Our first contribution is an algorithm that answers this question while achieving practical efficiency. Our second contribution concerns the stability of two dimensional systems with parameters. More precisely, given a two-dimensional system depending on a set of parameters, we present a new algorithm that computes regions of the parameter space in which the considered system is structurally stable

    Computation of the L\mathcal{L} \infty -norm of finite-dimensional linear systems

    Get PDF
    International audienceIn this paper, we study the problem of computing the L\mathcal{L}\infty- norm of finite-dimensional linear time-invariant systems. This problemis first reduced to the computation of the maximal x-projection of the real solutions (x,y)(x, y) of a bivariate polynomial system ={P,Py}\sum=\{P,{\frac{\partial{P}}{\partial{y}}}\}, with PZ[x,y]{P} \in \mathbb{Z}[x, y]. Then, we use standard computer algebra methods to solve the problem. In this paper, we alternatively study a method based on rational univariate representations, a method based on root separation, and finally a method first based on the sign variation of the leading coefficients of the signed subresultant sequence and then based on the identification of an isolating interval for the maximal xx-projection of the real solutions of \sum

    Bipolar and bivariate models in multi-criteria decision analysis: descriptive and constructive approaches

    Get PDF
    Multi-criteria decision analysis studies decision problems in which the alternatives are evaluated on several dimensions or viewpoints. In the problems we consider in this paper, the scales used for assessing the alternatives with respect to a viewpoint are bipolar and univariate or unipolar and bivariate. In the former case, the scale is divided in two zones by a neutral point; a positive feeling is associated to the zone above the neutral point and a negative feeling to the zone below this point. On unipolar bivariate scales, an alternative can receive both a positive and a negative evaluation, reflecting contradictory feelings or stimuli. The paper discusses procedures and models that have been proposed to aggregate multi-criteria evaluations when the scale of each criterion is of one of the two types above. We present both a constructive and a descriptive view on this question; the descriptive approach is concerned with characterizations of models of preference, while the constructive approach aims at building preferences by questioning the decision maker. We show that these views are complementary.Multiple criteria, Decision analysis, Preference, Bipolarmodels, Choquet integral

    A computer algebra user interface manifesto

    Full text link
    Many computer algebra systems have more than 1000 built-in functions, making expertise difficult. Using mock dialog boxes, this article describes a proposed interactive general-purpose wizard for organizing optional transformations and allowing easy fine grain control over the form of the result even by amateurs. This wizard integrates ideas including: * flexible subexpression selection; * complete control over the ordering of variables and commutative operands, with well-chosen defaults; * interleaving the choice of successively less main variables with applicable function choices to provide detailed control without incurring a combinatorial number of applicable alternatives at any one level; * quick applicability tests to reduce the listing of inapplicable transformations; * using an organizing principle to order the alternatives in a helpful manner; * labeling quickly-computed alternatives in dialog boxes with a preview of their results, * using ellipsis elisions if necessary or helpful; * allowing the user to retreat from a sequence of choices to explore other branches of the tree of alternatives or to return quickly to branches already visited; * allowing the user to accumulate more than one of the alternative forms; * integrating direct manipulation into the wizard; and * supporting not only the usual input-result pair mode, but also the useful alternative derivational and in situ replacement modes in a unified window.Comment: 38 pages, 12 figures, to be published in Communications in Computer Algebr

    On the Complexity of Solving Zero-Dimensional Polynomial Systems via Projection

    No full text
    Given a zero-dimensional polynomial system consisting of n integer polynomials in n variables, we propose a certified and complete method to compute all complex solutions of the system as well as a corresponding separating linear form l with coefficients of small bit size. For computing l, we need to project the solutions into one dimension along O(n) distinct directions but no further algebraic manipulations. The solutions are then directly reconstructed from the considered projections. The first step is deterministic, whereas the second step uses randomization, thus being Las-Vegas. The theoretical analysis of our approach shows that the overall cost for the two problems considered above is dominated by the cost of carrying out the projections. We also give bounds on the bit complexity of our algorithms that are exclusively stated in terms of the number of variables, the total degree and the bitsize of the input polynomials
    corecore