12,586 research outputs found

    Why it is important to build robots capable of doing science

    Get PDF
    Science, like any other cognitive activity, is grounded in the sensorimotor interaction of our bodies with the environment. Human embodiment thus constrains the class of scientific concepts and theories which are accessible to us. The paper explores the possibility of doing science with artificial cognitive agents, in the framework of an interactivist-constructivist cognitive model of science. Intelligent robots, by virtue of having different sensorimotor capabilities, may overcome the fundamental limitations of human science and provide important technological innovations. Mathematics and nanophysics are prime candidates for being studied by artificial scientists

    A Hierarchical Emotion Regulated Sensorimotor Model: Case Studies

    Full text link
    Inspired by the hierarchical cognitive architecture and the perception-action model (PAM), we propose that the internal status acts as a kind of common-coding representation which affects, mediates and even regulates the sensorimotor behaviours. These regulation can be depicted in the Bayesian framework, that is why cognitive agents are able to generate behaviours with subtle differences according to their emotion or recognize the emotion by perception. A novel recurrent neural network called recurrent neural network with parametric bias units (RNNPB) runs in three modes, constructing a two-level emotion regulated learning model, was further applied to testify this theory in two different cases.Comment: Accepted at The 5th International Conference on Data-Driven Control and Learning Systems. 201

    Enaction-Based Artificial Intelligence: Toward Coevolution with Humans in the Loop

    Full text link
    This article deals with the links between the enaction paradigm and artificial intelligence. Enaction is considered a metaphor for artificial intelligence, as a number of the notions which it deals with are deemed incompatible with the phenomenal field of the virtual. After explaining this stance, we shall review previous works regarding this issue in terms of artifical life and robotics. We shall focus on the lack of recognition of co-evolution at the heart of these approaches. We propose to explicitly integrate the evolution of the environment into our approach in order to refine the ontogenesis of the artificial system, and to compare it with the enaction paradigm. The growing complexity of the ontogenetic mechanisms to be activated can therefore be compensated by an interactive guidance system emanating from the environment. This proposition does not however resolve that of the relevance of the meaning created by the machine (sense-making). Such reflections lead us to integrate human interaction into this environment in order to construct relevant meaning in terms of participative artificial intelligence. This raises a number of questions with regards to setting up an enactive interaction. The article concludes by exploring a number of issues, thereby enabling us to associate current approaches with the principles of morphogenesis, guidance, the phenomenology of interactions and the use of minimal enactive interfaces in setting up experiments which will deal with the problem of artificial intelligence in a variety of enaction-based ways

    Beyond Gazing, Pointing, and Reaching: A Survey of Developmental Robotics

    Get PDF
    Developmental robotics is an emerging field located at the intersection of developmental psychology and robotics, that has lately attracted quite some attention. This paper gives a survey of a variety of research projects dealing with or inspired by developmental issues, and outlines possible future directions

    Robot pain: a speculative review of its functions

    Get PDF
    Given the scarce bibliography dealing explicitly with robot pain, this chapter has enriched its review with related research works about robot behaviours and capacities in which pain could play a role. It is shown that all such roles Âżranging from punishment to intrinsic motivation and planning knowledgeÂż can be formulated within the unified framework of reinforcement learning.Peer ReviewedPostprint (author's final draft
    • 

    corecore