305,122 research outputs found
Jaw Rotation in Dysarthria Measured With a Single Electromagnetic Articulography Sensor
Purpose This study evaluated a novel method for characterizing jaw rotation using orientation data from a single electromagnetic articulography sensor. This method was optimized for clinical application, and a preliminary examination of clinical feasibility and value was undertaken.
Method The computational adequacy of the single-sensor orientation method was evaluated through comparisons of jaw-rotation histories calculated from dual-sensor positional data for 16 typical talkers. The clinical feasibility and potential value of single-sensor jaw rotation were assessed through comparisons of 7 talkers with dysarthria and 19 typical talkers in connected speech.
Results The single-sensor orientation method allowed faster and safer participant preparation, required lower data-acquisition costs, and generated less high-frequency artifact than the dual-sensor positional approach. All talkers with dysarthria, regardless of severity, demonstrated jaw-rotation histories with more numerous changes in movement direction and reduced smoothness compared with typical talkers.
Conclusions Results suggest that the single-sensor orientation method for calculating jaw rotation during speech is clinically feasible. Given the preliminary nature of this study and the small participant pool, the clinical value of such measures remains an open question. Further work must address the potential confound of reduced speaking rate on movement smoothness
Compensation of Magnetic Disturbances Improves Inertial and Magnetic Sensing of Human Body Segment Orientation
This paper describes a complementary Kalman filter design to estimate orientation of human body segments by fusing gyroscope, accelerometer, and magnetometer signals from miniature sensors. Ferromagnetic materials or other magnetic fields near the sensor module disturb the local earth magnetic field and, therefore, the orientation estimation, which impedes many (ambulatory) applications. In the filter, the gyroscope bias error, orientation error, and magnetic disturbance error are estimated. The filter was tested under quasi-static and dynamic conditions with ferromagnetic materials close to the sensor module. The quasi-static experiments implied static positions and rotations around the three axes. In the dynamic experiments, three-dimensional rotations were performed near a metal tool case. The orientation estimated by the filter was compared with the orientation obtained with an optical reference system Vicon. Results show accurate and drift-free orientation estimates. The compensation results in a significant difference (p<0.01) between the orientation estimates with compensation of magnetic disturbances in comparison to no compensation or only gyroscopes. The average static error was 1.4/spl deg/ (standard deviation 0.4) in the magnetically disturbed experiments. The dynamic error was 2.6/spl deg/ root means square
Inertial and magnetic sensing of human movement near ferromagnetic materials
This paper describes a Kalman filter design to estimate orientation of human body segments by fusing gyroscope, accelerometer and magnetometer signals. Ferromagnetic materials near the sensor disturb the local magnetic field and therefore the orientation estimation. The magnetic disturbance can be detected by looking at the total magnetic density and a magnetic disturbance vector can be calculated. Results show the capability of this filter to correct for magnetic disturbances
Estimating Epipolar Geometry With The Use of a Camera Mounted Orientation Sensor
Context: Image processing and computer vision are rapidly becoming more and more commonplace, and the amount of information about a scene, such as 3D geometry, that can be obtained from an image, or multiple images of the scene is steadily increasing due to increasing resolutions and availability of imaging sensors, and an active research community. In parallel, advances in hardware design and manufacturing are allowing for devices such as gyroscopes, accelerometers and magnetometers and GPS receivers to be included alongside imaging devices at a consumer level.
Aims: This work aims to investigate the use of orientation sensors in the field of computer vision as sources of data to aid with image processing and the determination of a scene’s geometry, in particular, the epipolar geometry of a pair of images - and devises a hybrid methodology from two sets of previous works in order to exploit the information available from orientation sensors alongside data gathered from image processing techniques.
Method: A readily available consumer-level orientation sensor was used alongside a digital camera to capture images of a set of scenes and record the orientation of the camera. The fundamental matrix of these pairs of images was calculated using a variety of techniques - both incorporating data from the orientation sensor and excluding its use
Results: Some methodologies could not produce an acceptable result for the Fundamental Matrix on certain image pairs, however, a method described in the literature that used an orientation sensor always produced a result - however in cases where the hybrid or purely computer vision methods also produced a result - this was found to be the least accurate.
Conclusion: Results from this work show that the use of an orientation sensor to capture information alongside an imaging device can be used to improve both the accuracy and reliability of calculations of the scene’s geometry - however noise from the orientation sensor can limit this accuracy and further research would be needed to determine the magnitude of this problem and methods of mitigation
Dial It In: Rotating RF Sensors to Enhance Radio Tomography
A radio tomographic imaging (RTI) system uses the received signal strength
(RSS) measured by RF sensors in a static wireless network to localize people in
the deployment area, without having them to carry or wear an electronic device.
This paper addresses the fact that small-scale changes in the position and
orientation of the antenna of each RF sensor can dramatically affect imaging
and localization performance of an RTI system. However, the best placement for
a sensor is unknown at the time of deployment. Improving performance in a
deployed RTI system requires the deployer to iteratively "guess-and-retest",
i.e., pick a sensor to move and then re-run a calibration experiment to
determine if the localization performance had improved or degraded. We present
an RTI system of servo-nodes, RF sensors equipped with servo motors which
autonomously "dial it in", i.e., change position and orientation to optimize
the RSS on links of the network. By doing so, the localization accuracy of the
RTI system is quickly improved, without requiring any calibration experiment
from the deployer. Experiments conducted in three indoor environments
demonstrate that the servo-nodes system reduces localization error on average
by 32% compared to a standard RTI system composed of static RF sensors.Comment: 9 page
Attitude sensor for space vehicles Patent
Attitude sensor with scanning mirrors for detecting orientation of space vehicle with respect to plane
Improved Contrast Sensitivity DVS and its Application to Event-Driven Stereo Vision
This paper presents a new DVS sensor with
one order of magnitude improved contrast sensitivity over
previous reported DVSs. This sensor has been applied to a
bio-inspired event-based binocular system that performs
3D event-driven reconstruction of a scene. Events from two
DVS sensors are matched by using precise timing
information of their ocurrence. To improve matching
reliability, satisfaction of epipolar geometry constraint is
required, and simultaneously available information on the
orientation is used as an additional matching constraint.Ministerio de Economía y Competitividad PRI-PIMCHI-2011-0768Ministerio de Economía y Competitividad TEC2009-10639-C04-01Junta de Andalucía TIC-609
- …
