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Abstract 
This study evaluated a novel method for characterizing jaw rotation using orientation data from a 
single electromagnetic articulography sensor. This method was optimized for clinical application, and a 
preliminary examination of clinical feasibility and value was undertaken. The computational adequacy 

https://doi.org/10.1044/2017_AJSLP-16-0104
http://epublications.marquette.edu/


of the single-sensor orientation method was evaluated through comparisons of jaw-rotation histories 
calculated from dual-sensor positional data for 16 typical talkers. The clinical feasibility and potential 
value of single-sensor jaw rotation were assessed through comparisons of 7 talkers with dysarthria and 
19 typical talkers in connected speech. The single-sensor orientation method allowed faster and safer 
participant preparation, required lower data-acquisition costs, and generated less high-frequency 
artifact than the dual-sensor positional approach. All talkers with dysarthria, regardless of severity, 
demonstrated jaw-rotation histories with more numerous changes in movement direction and reduced 
smoothness compared with typical talkers. Results suggest that the single-sensor orientation method 
for calculating jaw rotation during speech is clinically feasible. Given the preliminary nature of this 
study and the small participant pool, the clinical value of such measures remains an open question. 
Further work must address the potential confound of reduced speaking rate on movement 
smoothness. 

Purpose: This study evaluated a novel method for characterizing jaw rotation using orientation data 
from a single electromagnetic articulography sensor. This method was optimized for clinical 
application, and a preliminary examination of clinical feasibility and value was undertaken. 

Method: The computational adequacy of the single-sensor orientation method was evaluated 
through comparisons of jaw-rotation histories calculated from dual-sensor positional data for 16 
typical talkers. The clinical feasibility and potential value of single-sensor jaw rotation were assessed 
through comparisons of 7 talkers with dysarthria and 19 typical talkers in connected speech. 

Results: The single-sensor orientation method allowed faster and safer participant preparation, 
required lower data-acquisition costs, and generated less high-frequency artifact than the dual-sensor 
positional approach. All talkers with dysarthria, regardless of severity, demonstrated jaw-rotation 
histories with more numerous changes in movement direction and reduced smoothness compared 
with typical talkers. 

Conclusions: Results suggest that the single-sensor orientation method for calculating jaw rotation 
during speech is clinically feasible. Given the preliminary nature of this study and the small participant 
pool, the clinical value of such measures remains an open question. Further work must address the 
potential confound of reduced speaking rate on movement smoothness. 

This special issue contains selected papers from the March 2016 Conference on Motor Speech held in 
Newport Beach, CA. 

Introduction 
The establishment of useful, objective measures of articulatory performance requires data-acquisition 
and analysis methods that are feasible for clinicians. Electromagnetic articulography (EMA) provides a 
means for characterizing tongue, lip, and jaw movements. EMA data may have unique clinical value in 
the assessment and treatment of motor speech disorders (Green, 2015; Green et al., 2013; Tilsen, Das, 
& McKee, 2015; Weismer, Yunusova, & Bunton, 2012). Although substantial work has developed 
methods for using EMA, nearly all EMA-based analyses rely exclusively on sensor-position data (cf. 
Henriques & van Lieshout, 2013; Kroos, 2009). Three-dimensional EMA systems provide sensor-
orientation data in addition to position data (Berry, 2011a; Kolb, Johnson, & Berry, 2015; Kroos, 2009). 



Yet a lack of demonstrated methods for using sensor-orientation data has limited potential clinical 
applications. The current work presents a novel use of EMA sensor-orientation data to objectively 
characterize physiological aspects of jaw movement in dysarthria. 

Physiological Measures in Dysarthria Assessment 
The notion that physiological measures may be important for characterizing dysarthria has existed 
since well before the 1960s (Duffy, 2006). Yet the pioneering works of Hardy (1967), and Darley, 
Aronson, and Brown (1969a, 1969b, 1975) have provided the impetus for various approaches to 
physiological characterization of dysarthria (Abbs, Hunker, & Barlow, 1983; Ballard, Solomon, Robin, 
Moon, & Folkins, 2009; Barlow, 1998; Dietsch et al., 2014; Duffy, 2013; Folkins et al., 1995; Hirose, 
1986; Kent, 1996, 2009, 2015; Kent & Rosen, 2004; Luschei, 1991; Murdoch, 2010; Netsell & Daniel, 
1979; Robin, Somodi, & Luschei, 1991; Rosenbek & LaPointe, 1985; Solomon, Clark, Makashay, & 
Newman, 2008; Theodoros, Murdoch, & Horton, 1999; Weismer & Kim, 2010). The Mayo Clinic 
classification system for motor speech disorders (Darley et al., 1969a, 1969b, 1975; Duffy, 2013) 
focuses on perceptual assessment techniques and seeks to infer physiologic correlates of disordered 
speech signs and symptoms. This system supports the notion that physiologic information about the 
involved speech subsystems is clinically relevant. The widely embraced principle of targeting 
individually defined pathophysiologic features of the speech subsystems in dysarthria treatment is a 
common justification for physiologic assessment (DePaul & Abbs, 1989; Netsell & Rosenbek, 1985; 
Rosenbek & Jones, 2009; Theodoros et al., 1999). 

Perceptual assessments of dysarthria are a mainstay of clinical practice (Duffy, 2006; Duffy & Kent, 
2001; Kent, 2009; Simmons & Mayo, 1997). Yet there are noteworthy limitations on the use of 
perceptual assessments, reflecting the challenge of dissociating multiple, co-occurring dimensions 
(respiratory, phonatory, resonatory, articulatory, prosodic, etc.), variations in the procedures and 
scaling systems associated with different perceptual assessment tools, and limits on the availability and 
effectiveness of clinical training that affect reliability (Kent, 1996; Zeplin & Kent, 1996; Zyski & 
Weisiger, 1987). Moreover, research on dysarthria has frequently reported discrepancies between 
inferred and objectively measured physiologic features of dysarthria that may reflect limits on the 
adequacy of perceptual inference when used in isolation (Kent, Kent, Duffy, & Weismer, 1998; 
Weismer & Kim, 2010). Thus, measurement of physiologic aspects of speech that can objectively 
characterize pertinent features of sensorimotor performance may be critical to the accurate 
characterization of speech deficits in dysarthria. 

Relatively many physiologic approaches have already been cited, but these systems differ conceptually 
and practically, particularly with respect to the level of analysis, assessment tasks, and 
instrumentation. A detailed discussion of these differences is beyond the scope of this article, but in 
general, pertinent physiologic processes are presumed to be characterized by measures of articulatory 
movement velocity, amplitude (range of motion), accuracy, smoothness, coordination, and muscle 
strength and tone (see Kent & Rosen, 2004). The phrase articulatory kinematics refers to measures of 
articulatory movement without information about the causal forces underlying those movements. 
These measures can be examined using various instruments. Whereas many such tools have been used 
primarily in research laboratories, because they are expensive and inefficient and require specialized 
training, direct measures of articulatory kinematics can now be obtained from talkers with dysarthria 



using instrumentation and methods that are increasingly cost effective and practical to implement 
within clinical environments. 

Levels of Analysis and the Potential Value of Kinematic Measures 
A distinct advantage of kinematic data is that some kinematic measures of performance are more 
directly interpretable than corresponding metrics from acoustic and perceptual levels of analysis. For 
example, articulatory movement velocity and amplitude are direct measures of the speed and range of 
articulatory movements that have often been shown to differentiate healthy and disordered speech 
(Weismer et al., 2012). One might assume that perceived changes in speaking rate correspond to 
predictable changes in articulatory movements; however, the kinematic changes exhibited by typical, 
healthy talkers to change speaking rate are quite complex and idiosyncratic and only sometimes seem 
to follow such straightforward expectations (see review in Berry, 2011b). Moreover, there are clinical 
examples in which perceived reductions in speaking rate can sometimes be associated with increases 
in articulatory-movement velocity (Yunusova et al., 2010), as well as examples where articulatory-
movement velocities are reduced despite perceived increases, or no differences, in speaking rate 
(Forrest, Weismer, & Turner, 1989; Walsh & Smith, 2012). 

At the acoustic level of analysis, articulatory-movement velocity and amplitude tend to correlate with 
measures of slope of the second formant (F2). Recent work examining the acoustics of dysarthria (Kim, 
Kent, & Weismer, 2011; Kim, Weismer, Kent, & Duffy, 2009; Lansford & Liss, 2014) demonstrates that, 
whereas acoustic metrics such as F2 slope may differentiate healthy and disordered speech and may 
be sensitive to changes in dysarthria severity, there is limited support for using such a measure to 
differentiate by disease or dysarthria subtype. Among several acoustic measures, Lansford and Liss 
(2014) found that only measures of F2 slope show statistically significant differences between patient 
groups, suggesting that both temporal and spectral aspects of speech may be pertinent to 
characterizing differential aspects of dysarthria subtypes. 

F2 slope reflects time-varying aspects of articulatory movement and is therefore an intuitive correlate 
of articulator velocity and amplitude. However, because F2 slope reflects the concomitant influences of 
multiple articulators (i.e., tongue, lips, jaw), such a measure may not be optimal for dissociating 
articulator-specific deficits (e.g., relatively poorer lip-movement control than tongue) and would not 
necessarily be sensitive to the sort of interarticulatory compensatory responses that have been 
hypothesized on the basis of kinematic studies of talkers with dysarthria. Such compensatory, adaptive 
behaviors are unlikely to reflect explicit strategies used by talkers with disordered speech, because 
similar articulatory trading relations occur in typical speech across examples of the same phoneme 
produced in different phonetic environments, to minimize acoustic variability using strategic trade-offs 
between articulator movements (Guenther et al., 1999; Perkell, 2012; Perkell, Matthies, Svirsky, & 
Jordan, 1993). It stands to reason that compensatory articulatory changes that occur in response to 
speech impairment resulting from disease may also exploit existing sensorimotor control strategies if 
one articulator is more compromised than another. Because kinematic measures can be used to 
differentiate between multiple articulators, they would be sensitive to subtle movement trade-offs 
between articulators that may not be detectable acoustically or perceptually. 

Another important consideration regarding the potential value of kinematic measures relates to the 
nature of the dysarthria being assessed. Certain examples of dysarthria are characterized by 



production deficits that are catastrophic for acoustic and perceptual measures. As an example, severe 
impairment in voice quality can substantially compromise typical methods for formant tracking, so 
although the phonatory component of a dysarthria may be readily characterized using acoustic and 
perceptual measures, the articulatory component of such a dysarthria may be best measured 
kinematically, because the detrimental effects of severe voice-quality impairment may mask 
articulatory deficits acoustically and perceptually. 

Perceptual and acoustic measures are most certainly easier and more cost effective to obtain than 
kinematic measures. Moreover, they are able to reflect the net abilities of the speech mechanism, 
suggesting that they are more likely to provide a measure of overall disability and characterize how 
well the speech subsystems operate collectively. Thus, the limitations of not being able to characterize 
articulator-specific deficits or circumstances in which specific deficits may mask acoustic and 
perceptual assessments are certainly not reasons to justify only kinematic measures of performance. 
All three levels of analysis most certainly have value and contribute uniquely to the process of 
assessment. 

Jaw Kinematics and Dysarthria 
Characteristics of jaw kinematics offer a context for using sensor orientation, because jaw movements 
have substantial rotation reflecting an independent level of sensorimotor control (Edwards & Harris, 
1990; Vatikiotis-Bateson & Ostry, 1995; Westbury, 1988). Despite the relative simplicity of jaw 
movement compared to other articulators, such as the tongue, jaw movements reflect an active 
sensitivity to both segmental and suprasegmental aspects of speech (Lim, Lin, & Bones, 2006; 
Mooshammer, Hoole, & Geumann, 2007). Moreover, within the available literature on the kinematics 
of dysarthria, a relatively large proportion has studied the jaw or the jaw-and-lower-lip complex, due to 
the accessibility of these structures. 

In general, it is well established that jaw movements are affected in dysarthria. Movement velocities of 
the jaw (or jaw and lip) have been observed to be reduced in talkers with Parkinson's disease 
compared with neurologically healthy talkers (Caligiuri, 1987; Connor, Abbs, Cole, & Gracco, 1989; 
Forrest et al., 1989; Forrest & Weismer, 1995; Walsh & Smith, 2012). Reduced movement velocities 
have also been reported for talkers with cerebellar disease (Ackermann, Hertrich, Daum, Scharf, & 
Spieker, 1997; Hirose, Kiritani, & Sawashima, 1982b; Hirose, Kiritani, Ushijima, & Sawashima, 1978; 
Kent & Netsell, 1975), amyotrophic lateral sclerosis (ALS; Mefferd, Green, & Pattee, 2012; Yunusova, 
Weismer, Westbury, & Lindstrom, 2008), cerebral palsy (Kent & Netsell, 1978; Rong, Loucks, Kim, & 
Hasegawa-Johnson, 2012), and traumatic brain injury (TBI; Kent, Netsell, & Bauer, 1975; Loh, Goozée, 
& Murdoch, 2005; Murdoch & Goozée, 2003). 

Increased amplitude of jaw movements has been reported for some talkers with ALS (DePaul, Abbs, 
Caligiuri, Gracco, & Brooks, 1988; Hirose et al., 1982a; Kent et al., 1975; Mefferd et al., 2012), in 
addition to context-specific increases or decreases in jaw-movement amplitude during word recitation 
coupled with generally reduced jawmovement velocities (Yunusova et al., 2008). In a small-scale 
longitudinal study of disease progression in ALS, Yunusova et al. (2010) noted increases in jaw-
movement amplitude and velocity despite continuous declines in speaking rate. Yunusova, Green, 
Lindstrom, Pattee, and Zinman (2013) also reported that jaw-movement amplitudes for talkers with 
ALS tended to increase with advancing disease severity. Such apparently conflicting findings may 



suggest a complex interplay between changes in speech ability and adaptive sensorimotor function and 
underscore the challenge of inferring physiological effects from perceptual data. Yunusova et al. (2010) 
have reported that measures of speaking rate were sensitive indices of bulbar decline in ALS, yet 
kinematic measures from these patients reflected unanticipated, potentially important information 
about the adaptive state of the sensorimotor system or the degenerative disease process that could 
not be gleaned from speaking rate alone. Moreover, in a much larger scale longitudinal study of ALS, 
Rong, Yunusova, Wang, and Green (2015) found that instrumental-based measures of articulatory and 
phonatory function predicted bulbar decline in ALS prior to notable changes in speech intelligibility and 
speaking rate. 

Changes in jaw-movement amplitude have been hypothesized to reflect compensatory, adaptive 
changes in response to relatively more impaired tongue movements in ALS (DePaul & Abbs, 1987; 
Langmore & Lehman, 1994; Mefferd et al., 2012; Yunusova et al., 2008), but may alternatively be a 
reflection of pathological changes associated with degenerative disease processes (Yunusova et al., 
2013). It should be noted that whereas the term "compensatory" is often used to imply that behavioral 
changes are adaptive (working to support functional behaviors by helping compensate for 
breakdowns), compensatory behaviors may also be maladaptive, or working antagonistically to further 
undermine the achievement of functional behaviors. Differential impairment between articulators has 
been reported for people with TBI (Jaeger, Hertrich, Stattrop, Schönle, & Ackermann, 2000) and talkers 
with cerebral palsy (Rong et al., 2012); as a consequence, the hypothesis that dysarthriarelated 
articulatory changes may reflect a degree of secondary response to primary impairment of other 
articulators has also been used to explain articulatory-movement differences observed in people with 
TBI (Murdoch & Goozée, 2003). Loh et al. (2005) also found generally reduced jawmovement velocity 
and amplitude for children with TBI, but noted substantial talker differences with regard to movement 
variability that may have reflected different compensatory strategies. By contrast, Bartle, Goozée, 
Scott, Murdoch, and Kuruvilla (2006) found that three of their nine participants with TBI demonstrated 
increased ranges of jaw-movement amplitude, a finding that mimicked earlier results from Netsell and 
Kent (1976) for a talker with ataxic dysarthria. In general, although the broader literature suggests that 
articulatory-movement amplitudes are generally reduced in dysarthria, kinematic studies of jaw 
movement seem to characterize a wide range of idiosyncrasy that has often been interpreted as 
reflecting adaptive efforts either to stabilize the other articulators by reducing jaw-movement 
amplitudes or to increase jaw-movement amplitudes to compensate for restricted ranges of motion in 
the tongue or lips. 

Concerns about differential articulatory impairments within talkers with dysarthria has motivated work 
examining the relative (interarticulatory) timing of tongue, lip, and jaw movements. Weismer, 
Yunusova, and Westbury (2003) found similar relative timing patterns among talkers with Parkinson's 
disease, talkers with ALS, and healthy older adults. Bartle et al. (2006) also found little evidence of 
noteworthy differences in tongue, lip, and jaw timing for participants with TBI, although they 
suggested that substantial variability within and across participants (both the control group and 
participants with TBI) may have washed out any statistically significant differences between groups in 
the study. It is interesting that although there is a long-standing expectation that some talkers with 
dysarthria are affected by a lack of coordination (Darley et al., 1975; Duffy, 2013), efforts to objectively 
characterize coordinative breakdowns associated with dysarthria have been largely equivocal. Connor 



et al. (1989) observed apparent increases in movement synchrony in participants with Parkinson's 
disease rather than the reduced synchrony that one might anticipate as a reflection of discoordination. 
Such a finding may be another example of adaptive changes, in this case with regard to 
interarticulatory timing, that occur to stabilize the disordered sensorimotor control system and help 
compensate for coordination difficulties. Identifying these sorts of differences in sensorimotor control 
is important for understanding dysarthria and devising individualized treatment strategies on the basis 
of a thorough understanding of both primary and secondary features of disordered speech. 

In addition to concerns about interarticulatory coordination, many studies of articulatory kinematics 
have examined the relations among different kinematic parameters within the movements of an 
articulator. A particularly common focus has been the ratio of articulatory-movement velocity to 
amplitude. These two parameters are typically linearly related. The scaling of movement velocity with 
amplitude ("move farther, move faster") is a pervasively observed feature of movement kinematics 
that may be altered for some talkers with motor speech disorders (Ackermann et al., 1997; 
Ackermann, Hertrich, & Scharf, 1995; Jaeger et al., 2000), though reports for talkers with Parkinson's 
disease (Forrest et al., 1989; Forrest & Weismer, 1995) have indicated no differences. 

Closing and opening movements of the jaws may differ, with oral closure faster than release (Gracco, 
1994). Speaking-rate changes may further these differences, resulting in distinct changes in movement 
form (Adams, Weismer, & Kent, 1993). Because speaking rate is known to affect aspects of articulatory 
kinematics, the reduced speaking rate that is typically associated with dysarthria may complicate the 
interpretation of certain kinematic measures, particularly those associated with the smoothness and 
stability of movements. Measures of movement smoothness and stability have been used to 
characterize the process of motor recovery following stroke (see Balasubramanian, Melendez-
Calderon, Roby-Brami, & Burdet, 2015; Rohrer et al., 2002) and have been used in a wide range of 
speech studies to examine the variability of movement patterns (Smith, Johnson, McGillem, & 
Goffman, 2000). 

Reductions in speaking rate have been observed to increase the spatial and temporal variability 
(decrease smoothness) of articulator movements for talkers with dysarthria (Kleinow, Smith, & Ramig, 
2001). Increasing speech intensity, however, may actually reduce the variability of articulator 
movements for talkers with Parkinson's disease (Dromey, 2000; Kleinow et al., 2001). The mechanisms 
underlying this intensity effect are not entirely clear, but substantial work has focused on the 
treatment benefits of increased speech intensity (e.g., Dromey, Ramig, & Johnson, 1995; Ramig, 
Bonitati, Lemke, & Horii, 1994; Sapir, 2014; Sapir, Spielman, Ramig, Story, & Fox, 2007; Solomon, 
McKee, & Garcia-Barry, 2001). Healthy talkers typically tend to increase articulatory-movement 
velocity and amplitude with increases in speech intensity (Huber & Chandrasekaran, 2006; McClean & 
Tasko, 2002; Schulman, 1989; Tasko & McClean, 2004). Talkers with Parkinson's disease may also 
follow a similar pattern of kinematic change when increasing speech intensity (Dromey, 2000), though 
the manner by which intensity modifications are elicited from a talker affects the form of kinematic 
changes (Darling & Huber, 2011). Darling and Huber (2011) have suggested that talkers with 
Parkinson's disease may implement different articulatory strategies for changing speech intensity due 
to differential subsystem impairments, possibly using greater respiratory modification to increase 
intensity in compensation for a relatively restricted capacity to alter jaw-movement amplitude. Such an 



interpretation (again) underscores the potential need for assessing talkers with dysarthria at multiple 
levels and within different subsystems of the speech mechanism to have a stronger basis for evaluating 
the possibility of compensatory and adaptive changes in sensorimotor function. 

In summary, jaw-movement kinematics are subject to both segmental and suprasegmental factors and 
may be particularly affected by variables such as speaking rate and speech intensity, which are 
commonly altered in dysarthria. A relatively large proportion of the kinematic literature on dysarthria 
has examined jaw movements and established that dysarthria may be associated with differences in 
the jaw-movement velocity, amplitude, and variability. Many studies have speculated that altered jaw 
movements may reflect compensatory or adaptive changes in sensorimotor control in response to 
differential impairments across articulators or subsystems. 

Toward the Use of Physiological Data in Dysarthria Assessment 
The preceding review supports the position that there is a strong historical basis and substantial clinical 
motivation for the complementary use of physiological measures in the assessment of dysarthria. 
Different levels of analysis (perceptual, acoustic, physiologic) provide distinct information about the 
nature of dysarthria. Taken together, data from these different levels allow the clinician a more 
complete view of the individual with dysarthria and provide a stronger basis for treatment planning 
and outcome assessment. Movement toward broader clinical use of physiologic measures is partially 
dependent on the development of methods that are valid, reliable, and cost and time effective for 
clinicians to implement. 

In the current work, a single EMA sensor was used to register orientation data and quantify jaw 
rotation during speech. The methods for sensor placement, data acquisition, and data analysis were 
developed with the goal of making them easy and efficient to implement in order to optimize clinical 
feasibility. To evaluate whether such an approach may have value, the current work examines the 
adequacy of the signal-processing methods used and the potential for measures that are based on the 
current method to provide insights about articulatory movements in dysarthria. The adequacy of the 
proposed single-sensor (orientation) method was evaluated by comparison with data calculated using 
a position-based, dual-sensor method. The potential clinical value of single-sensor jaw rotation was 
evaluated by comparing data from talkers with dysarthria with data from typical talkers reading The 
Caterpillar (Patel et al., 2013). A variety of measures were used to provide a preliminary appraisal of 
the potential clinical value of jaw-rotation measures. Taken together, the two experiments presented 
in this article aim to provide a proof of concept regarding the single-sensor method for characterizing 
jaw movement. 

Method 
EMA Data 
All EMA data were collected using the NDI Wave Speech Research System (Wave system). The Wave 
system can track sensors with either 5 or 6 degrees of freedom (DOF) in a 300 mm cube, and includes 
internal motion correction relative to a primary designated reference sensor, typically used for head-
movement correction. Because 6-DOF sensors are bulky and can interfere with articulation, a typical 
configuration uses a single head-mounted reference sensor and all other sensors with 5 DOF. 



The Wave system returns positional data (X, Y, Z positions) as well as orientation data from sensors, 
expressed in quaternions. In computer graphics and visualization, quaternions are often used to 
represent rotations and orientations, due to their compactness compared with Euler matrices and 
avoidance of gimbal lock (Hanson, 2005). Formally defined, a quaternion is a complex number of the 
form 

𝑞𝑞 = �𝑞𝑞0, 𝑞𝑞𝑥𝑥𝒊𝒊, 𝑞𝑞𝑦𝑦𝒋𝒋, 𝑞𝑞𝑧𝑧𝒌𝒌�, (1) 

where q0, qx, qy, and qz are real numbers and i, j, and k are imaginary numbers satisfying the equation 

𝑖𝑖2  =  𝑗𝑗2  =  𝑘𝑘2  =  𝑖𝑖𝑗𝑗𝑘𝑘 =  −1.  (2) 

Normalized quaternions (‖𝑞𝑞‖  =  1) are used exclusively when doing rotations, because they preserve 
the lengths of the vectors being rotated and have the desirable property that their conjugate is their 
inverse (Hart, Francis, & Kauffman, 1994). A quaternion can be thought of as an angle-axis pair, 
representing rotation by angle θ about an axis 𝑣𝑣: 

𝑞𝑞 =   �cos(θ = 2) , sin(θ/2)  �𝑞𝑞𝑥𝑥𝑖𝑖 + 𝑞𝑞𝑦𝑦𝑗𝑗 +  𝑞𝑞𝑧𝑧𝑘𝑘��,  (3) 

where 𝑣𝑣 = sin(θ/2)  �𝑞𝑞𝑥𝑥𝑖𝑖 +  𝑞𝑞𝑦𝑦𝑗𝑗 +  𝑞𝑞𝑧𝑧𝑘𝑘�. To rotate from a vector 𝑏𝑏𝑖𝑖 to a new vector 𝑏𝑏𝑓𝑓, a quaternion 
(detailed in Hart et al., 1994) is required of the form 

𝑏𝑏f  =  𝑞𝑞𝑏𝑏i𝑞𝑞∗, (4) 
where 𝑞𝑞 represents the desired quaternion rotation from Equation 3 and 𝑞𝑞∗ is its conjugate. Using 
Equations 3 and 4, a quaternion can be used to represent the rotation required to derive an object's 
current orientation vector from a predetermined baseline orientation vector. 

In the Wave system the 6-DOF reference sensor registers X, Y and Z positions as well as [𝑞𝑞0,  𝑞𝑞𝑥𝑥, 𝑞𝑞𝑦𝑦, 𝑞𝑞𝑧𝑧] 
quaternion orientation information representing rotation relative to a baseline orientation predefined 
by the system. The 5-DOF sensors also register [𝑞𝑞0,  𝑞𝑞𝑥𝑥, 𝑞𝑞𝑦𝑦, 𝑞𝑞𝑧𝑧] quaternion data, but with 𝑞𝑞z  =  0. This 
approach represents the sensor plane (the plane of the internal sensor toroid) but provides no 
information about the yaw (twist) of this plane. The choice of 𝑞𝑞z  =  0 is arbitrary but allows for 
consistent representation of a planar orientation with a three-dimensional quaternion. For the current 
experiments, the reference sensor was rigidly attached to the nose bridge of glasses worn by the 
participants, centered in the midsagittal plane. Figure 1 shows a participant seated next to the Wave 
field generator and wearing reference glasses. The 6-DOF sensor is placed to mimic the axes defined by 
the global coordinate system of the Wave system. 

To calibrate the position and orientation data for a given participant's articulatory working space, a 
bite-plate record was taken, with the purpose of establishing the maxillary occlusal plane as the XZ 
plane and the midsagittal plane as the XY plane. A bite plate was formed from two softened pieces of 
bite-registration wax sandwiched around a tongue depressor. Participants were required to bite down 
on the warm wax. The resulting dental impression was used to identify the locations of two 5-DOF 
sensors that were embedded within the wax and to define the necessary anatomical reference points 
(see Figure 1, lower left). A short EMA recording was then taken with the sensor-embedded bite plate 



returned to the mouth. One 5-DOF sensor was positioned in the bite plate anteriorly abutting the 
juncture of the central maxillary incisors and the second 5-DOF sensor was positioned to bisect the 
(transverse) distance between the maxillary first and second molars. Taken together, the sensor 
locations were used to define the midsagittal and maxillary occlusal planes in a local coordinate space 
with its origin at the central maxillary incisors. 

Figure 1. Experimental setup, bite plate, and coordinate system. 

 

Figure 1 shows an approximation of the local coordinate system used in the ensuing analysis, with the 
x-axis reflecting anterior-posterior sensor position, the y-axis reflecting inferior-superior sensor 
position, and the z-axis characterizing deviation from the midsagittal plane (𝑍𝑍 =  0). Also visible in 
Figure 1 is the anterior jaw sensor, affixed to the labial surface of the midline juncture of the 
mandibular incisors (MI) with the sensor lead orientated laterally. This placement allows registration of 
sensor rotation about the z-axis, which is most relevant to characterizing jaw movement. Although not 
explicitly analyzed in the current work, this sensor placement will also register translational 
movements of the sensor along all three axes, which may be useful for making a more complete 
characterization of jaw movement (Edwards & Harris, 1990). 

Jaw-Rotation Calculations 
For the first experiment in this study, jaw rotation was calculated using two methods: a dual-sensor 
calculation using only positional data and a single-sensor method using orientation data. The second 
experiment, examining the clinical relevance of EMA-based jaw-rotation measurement, used only the 
single-sensor method of calculation, with a sensor-adhesion approach that was optimized for safe, fast, 
reliable data acquisition. 

The dual-sensor calculation determined the angle between the x-axis (the [1,0] vector) and the vector 
pointing from the mandibular molar (MM) sensor to the MI sensor, vMI-MM. Because the angle of 
interest is defined in the XY plane, all vectors were projected onto that plane. The x-axis vector 
represents the maxillary occlusal plane. The vector vMI-MM represents the mandible and changes 
direction as the mandible is elevated and depressed (see Figure 2). 

Figure 2. Schematic of jaw angle defined with respect to the maxillary occlusal plane with electromagnetic 
articulography sensors mandibular molar (MM) and mandibular incisor (MI). 



 

Using the two vectors, and defining opening of the jaws as a negative angle, the angle can be 
calculated as follows: 

 

θ =  −cos−1[(x ⋅ vMI−MM)/(‖x‖‖vMI−MM)], (5) 
where 𝑥𝑥 is the x-axis vector and θ is the jaw-opening angle. Because the MM and MI sensors were 
difficult to place exactly parallel to the XZ plane, the zero jaw angle would actually be registered as a 
small offset from zero. To correct for the offset and report an absolute jaw angle, the position-derived 
angles were corrected using 

θp′   =  θp  −  max �θp�, (6) 

where θp′  is the absolute jaw angle. This method requires that the participant completely occlude the 
jaws at some point during the data record. 

The single-sensor method for calculating jaw rotation uses the quaternion orientation data from the MI 
sensor. The same maxillary vector (the [1,0] vector) is used as in the dual-sensor method, but the 
lower-jaw vector is calculated differently. It is obtained using Equation 4 along with the quaternion 
data from the MI sensor: 

𝑣𝑣L  =  𝑞𝑞MI𝑣𝑣b𝑞𝑞MI∗, (7) 
where 𝑣𝑣L is the lower-jaw vector, 𝑞𝑞MI is the quaternion obtained from the MI sensor, and 𝑣𝑣b is the 
baseline orientation vector. During bite-plate correction, average sensor orientation is computed and 
used as a baseline reference, so that future calculations are done relative to this base orientation. The 
baseline orientation vector is enforced to be along the z-axis [0,0,1] (pointing toward the participant's 
right side). Using Equation 7, the lowerjaw vector is calculated and the final jaw angle is solved for 
using 

θ =  −cos−1(x ⋅ vL)/‖x‖‖vL‖, (8) 
The sensor is affixed such that its orientation-norm vector is approximately perpendicular to the lower 
incisors. The jaw angle is determined by taking the current sensor angle relative to the jaw-closed 
sensor angle by subtracting a baseline offset from the quaternion data. As with the position-derived 
angles, the orientation-derived angle offset was chosen to be the greatest recorded angle in a given 
record. The new angles were 



θo′   =  θo –  max(θo), (9) 
where θo′  represents the absolute jaw angle. 

Time-varying changes in jaw rotation were determined via the two methods already described. 
Calculations were corrected such that the maximum jaw rotation was 0, and all corresponding jaw 
angles of rotation were negative with respect to this baseline. This approach characterizes depression 
of the mandible through increasingly negative angles. 

Participants, Jaw-Sensor Placements, and Speaking Tasks 
Experiment 1 
The single-sensor orientation method and the dualsensor position method of calculating jaw rotation 
were compared on the basis of data from 16 typical talkers with two 5-DOF EMA sensors attached to 
the lower teeth-one to the midsagittal juncture of the central MI and another on the buccal surface of 
the first or second MM-using Iso-Dent cyanoacrylate dental adhesive (Ellman International, Oceanside, 
NY). Participants in this experiment were asked to repeatedly say the word "buttercup" and to repeat a 
sequence of vowel sounds as well as hold the jaws closed in a static position. 

Experiment 2 
The potential clinical value of single-sensor jaw rotation was examined on the basis of data from 26 
adult participants (ages 19-52 years). Nineteen of these participants were typical talkers (eight female 
and 11 male) and seven were people with dysarthria (four female and three male). Talkers with 
dysarthria had a range of severity (mild to profound), age, etiology and perceived features of 
dysarthria and sensorimotor impairment (see Table 1). Although all of these individuals had acquired, 
chronic dysarthria secondary to stroke or other nondegenerative brain injury, the participant group 
was quite diverse. Such diversity may be critical to determining how different assessment measures 
may reflect different aspects of dysarthria. This perspective seems reasonable, given the historical 
challenges of finding predictable correlations among measures at different levels of analysis or 
predicting physiological deficits exclusively on the basis of perceptual subtyping (Weismer & Kim, 
2010). 

For Experiment 2, a single 5-DOF EMA sensor was attached to the midsagittal juncture of the central 
MI (as before; see Figure 1). To optimize the clinical feasibility of data acquisition, a method for sensor 
adhesion was used that increased the safety and efficiency of sensor placement. MI sensors were 
prepared in advance of data acquisition. For each sensor, a rectangle 5x15 mm was cut from 
Stomahesive gum (ConvaTec, Princeton, NJ). The EMA sensor was pressed into the center of the 
rectangle, creating an impression. This impression was filled with Periacryl 90 Oral Tissue Adhesive 
(Glustitch, Delta, British Columbia, Canada). The EMA sensor was then repositioned in the glue-filled 
impression and a weighted tongue depressor was placed on top to assure that the sensor was tightly 
fitted to the Stomahesive while the glue dried. Once the glue was dry, the prepared sensor was ready 
for use. To prepare a participant for the experiment, the labial surface of the lower front teeth was 
dried with gauze and then the Stomahesive-backed EMA sensor was pressed onto the dental surface of 
the MI. Care was taken to ensure that the Stomahesive gum contacted only dental surfaces, because it 
does not adhere to oral tissues. This sensoradhesion technique proved extremely effective and 



efficient (typically requiring less than 5 min), eliminated the need for direct use of cyanoacrylate 
adhesives on the oral tissues (which increased participant safety), and reduced data-acquisition costs. 

Participants in the second experiment were asked to read The Caterpillar (Patel et al., 2013). The text 
for the script was displayed on a computer monitor. The total script was segmented on the basis of the 
(17) average breath groups used by typical talkers. Four segments of the script were then extracted for 
analysis. These specific segments were identified on the basis of the average number of directional 
changes in jaw movement (analogous to strokes; see Tasko & Westbury, 2002) exhibited by typical 
talkers for each segment. To be specific, the four segments extracted for further analysis were (a) the 
segment with the fewest typical strokes, (b) the segment with the highest number of typical strokes, 
and (c) two segments with nearly equivalent stroke numbers occurring near the beginning and end of 
the script. It was assumed that the number of jaw strokes within a segment roughly reflected the 
movement complexity. In consequence, the segments selected for analysis were assumed to represent 
(a) a relatively low-complexity jawmovement sequence (Segment 11), (b) a relatively highcomplexity 
jaw-movement sequence (Segment 17), and (c) two sequences of relatively comparable complexity 
occurring early and late in the read passage (Segments 1 and 15) that could reveal performance 
differences across the time course of the speech task (e.g., fatigue). 

Several parameters associated with jaw rotation were measured for each participant in each of the 
four extracted segments of the reading script. These parameters were chosen to explore different 
aspects of the kinematics of jaw rotation and were not driven by explicit hypotheses regarding the 
possible form of jaw kinematic differences between typical talkers and talkers with dysarthria. Table 2 
summarizes the various parameters that were measured (see also Takada, Yashiro, & Takagi, 2006). 
These parameters were not mutually exclusive, but were assumed to variously reflect three general 
aspects of jaw rotation: movement amplitude, movement smoothness, and movement velocity. 

Table 1. Participants with dysarthria: Demographics, documented pathophysiology, and perceptual 
features of speech 

Participant Age 
(years) 

Pathophysiology Features of speech 

Women    
D04F 32 12.5 years post TBI secondary to 

MVA and 1.5-month coma. 
Presented with bilateral vocal 
folds paresis, velopharyngeal 
insufficiency, right lingual 
paresis, and bilateral upper-
limb and trunk spasticity. 

Profound dysarthria with 15% word-level 
intelligibility, nonfunctionally intelligible 
conversational speech characterized by chronic 
hypernasality, severely reduced speaking rate, 
and severe phoneme distortions. 

D91F 38 3 years post CVA. Presented with mild expressive aphasia and mild 
dysarthria characterized by mild phoneme 
distortions, intermittently atypical phrasing, 
intermittent speaking-rate variation, and 
excessive pitch variation. Conversational speech 
intelligibility was within functional limits. 

D92F 46 2.5 years post CVA Presented with right orofacial paresis with mild 
expressive aphasia, mild dysarthria, and 
possible mild apraxia of speech. Speech 



characterized by mild–moderate and 
intermittently irregular phoneme distortions, 
reduced pitch variation, and mildly reduced 
speaking rate. Conversational speech 
intelligibility was within functional limits. 

D93F 28 8 years post ruptured right-sided 
sylvianchoroidal AVM. 

Residual mild expressive (crossed) aphasia and 
mild dysarthria characterized by mildly 
reduced speaking rate, mildly reduced prosodic 
variation, and intermittent phoneme 
distortions, particularly with increased 
speaking rate. Conversational speech 
intelligibility was within functional limits. 

Men    
D08M 53 2 years post hyponatremic 

encephalopathy and 2-week 
coma. Presented with orofacial 
spasticity and bilateral upperand 
lower-limb spasticity. 

Severe dysarthria and intermittent disfluencies 
with severe phoneme distortions and 70% 
word-level intelligibility (achieved in part 
through explicit efforts to hyperarticulate 
word-level speech). Conversational speech was 
severely unintelligible, but borderline 
functional due to frequent, hyperarticulated 
word repetitions and other compensatory 
repairs for communication breakdowns. 

D09M 25 2 years post TBI (MVA) and 3.5-
month coma, as well as recent 
history of seizures. Presented 
with orofacial spasticity and 
severely reduced breath 
support. 

Severe dysarthria with 76% word-level 
intelligibility and severely reduced intelligibility 
during conversational speech. Speech was 
characterized by severe phoneme distortion, 
moderately reduced loudness, moderately 
reduced speaking rate, mildly reduced pitch 
variation, and intermittent, mild hypernasality. 

D94M 24 10.5 years post multiple 
intracerebral hemorrhages 
secondary to left basalganglia 
AVM and a large left MCA 
infarction. 

Presented with right orofacial paresis, mild–
moderate expressive aphasia and mild 
dysarthria. Speech was characterized by 
intermittently reduced loudness, intermittent, 
mild hypernasality, and intermittent, mildly 
reduced speaking rate. Conversational speech 
intelligibility was mildly reduced 
intermittently, particularly with increased 
speaking rate. 

Note. TBI = traumatic brain injury; MVA = motor-vehicle accident; CVA = cerebrovascular accident; AVM = 
arteriovenous malformation; 
MCA = middle cerebral artery. 
 

Table 2. Measures of jaw rotation. 
Measure type Measure Definition 
Movement amplitude Mean percent angle (MnPA) mean angle

talker global max angle
 

 Median percent angle (MdPA) median angle
talker global max angle

 



 Maximum percent angle (MxPA) max angle
talker global max angle

 

Movement smoothness Coefficient of variation (CV) 100 × std:dev
mean

: 
 Strokes # of changes in direction of jaw rotation 
 Normalized jerk cost—scaled (NJCs) �0.5 ∫ �𝑥𝑥′′′ (𝑡𝑡)�2 + �𝑦𝑦′′′(𝑡𝑡)�2 + �𝑧𝑧′′′(𝑡𝑡)�2𝑑𝑑𝑡𝑡𝑇𝑇2

𝑇𝑇1
� ×   𝑡𝑡5

�∫ ��𝑑𝑑𝑥𝑥(𝑡𝑡)
𝑑𝑑𝑡𝑡 �

2
+ �𝑑𝑑𝑦𝑦(𝑡𝑡)

𝑑𝑑𝑡𝑡 �
2

+ �𝑑𝑑𝑧𝑧(𝑡𝑡)
𝑑𝑑𝑡𝑡 �

2
𝑑𝑑𝑡𝑡𝑇𝑇2

𝑇𝑇1
�

 2  
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change 

Peak angular velocity—elevate 
(PAVe) 
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where the angular velocity ω =
dΦ
dt

 

 Peak angular velocity—depress 
(PAVd) 

max |−ω|  𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑑𝑑𝑠𝑠�

where the angular velocity ω =
dΦ
dt

 

 

Results 
Experiment 1 
Figure 3 shows a series of jaw movements from a single participant calculated using the orientation 
(single-sensor) method (shown in red) and the position (dual-sensor) method (shown in blue). The 
talker elevates the mandible briefly near the beginning of the recording and then depresses the 
mandible before repeating a sequence of vowel sounds. The two methods of calculation produce slight 
differences in the shape and magnitude of jaw-angle variation. More frequent, small-magnitude 
oscillations are apparent in the position-based time series compared with the orientation-based data. 
The position time series also registers somewhat larger movement amplitudes, with offsets from the 
orientation data that vary over the time course of the record. Nonetheless, the correlation between 
the two methods across the data records for all 16 participants was .981. 

Experiment 2 
Table 3 provides summary statistics for the various measured parameters across all typical talkers 
(divided by sex). Aside from some sex differences in relative variance, the only notable sex differences 
appear to be that women tend toward higher angular velocities than men for both jaw elevation and 
depression, and men tend toward peak jaw openings that reflect a large proportion of their maximum 
opening. In both regards, participants exhibit relatively high standard deviations in these data. For all 
talkers, mean and median jaw opening is approximately 30% of the global maximum. In addition, jaw-
depression velocities tend to be higher than jaw-elevation velocities for Segments 11 and 17, with the 
reverse pattern for Segments 1 and 15. 

Table 4 provides summary statistics for the various measured parameters for each of the participants 
with dysarthria. Boldface indicates values that are more than 2 SDs from the mean for the typical 
talkers of the same sex. This approach is intended to be descriptive and help highlight participant-
specific differences, rather than serve as an indicator of inferential statistical analysis. Robust statistical 
analysis was simply not feasible, given the paucity of participants in this preliminary study. 

  



Figure 3. Comparison of orientation (single sensor) and position (dual sensor) measures of jaw rotation 

 

Several participant-specific observations can be made from these data. Two talkers with dysarthria 
exhibit obvious differences in relative jaw opening and angular velocity, with values larger than typical, 
indicating faster and larger changes in jaw rotation. Participant D04F, in particular, exhibits jaw 
depressions at angular velocities nearly twice that of her jaw elevations. All talkers with dysarthria 
produced jaw-rotation histories characterized by an increased number of strokes and increased 
normalized jerk cost. For most talkers with dysarthria these differences were evident even for the 
shortest-breath groups, and the magnitudes of these differences were further increased for longer-
breath groups. In addition, most of these talkers showed increases in both measures for comparable 
segments (Segments 1 and 15) from the beginning and end of the passage. 

Table 3. Jaw-rotation measures for typical talkers: M (SD). 
Segment MnPA (%) MdPA (%) MxPA (%) CV Strokes NJCs PAVe (°/s) PAVd (°/s) 
Women         
Segment 11 28 (4) 28 (3) 63 (17) 63 (11) 6 (1) 1 (1) 43 (25) −49 (8) 
Segment 17 29 (5) 27 (6) 70 (12) 53 (11) 41 (3) 537 (143) 58 (33) −63 (21) 
Segment 1 22 (5) 20 (6) 57 (15) 64 (17) 17 (3) 27 (17) 44 (11) −38 (17) 
Segment 15 30 (6) 30 (7) 73 (15) 58 (12) 18 (3) 44 (14) 62 (46) −57 (14) 
Men         
Segment 11 30 (7) 31 (10) 62 (12) 62 (12) 7 (2) 1 (1) 33 (16) −43 (16) 
Segment 17 35 (9) 34 (11) 79 (11) 49 (13) 39 (8) 591 (314) 39 (15) −53 (21) 
Segment 1 29 (9) 27 (10) 67 (17) 56 (13) 19 (5) 47 (43) 40 (10) −31 (8) 
Segment 15 29 (6) 28 (8) 69 (13) 56 (10) 19 (3) 44 (22) 40 (14) −40 (15) 

Note. MnPA = mean percent angle; MdPA = median percent angle; MxPA = maximum percent angle; CV = 
coefficient of variation; NJCs = normalized jerk cost—scaled; PAVe = peak angular velocity—elevate; PAVd = 
peak angular velocity—depress. 

Discussion 
Experiment 1 
Results of Experiment 1 show that single-sensor, orientation-based registration of jaw rotation 
provides information about jaw movement that is comparable to data obtained using a dual-sensor, 
positional approach but with lower measurement error. Overall, the methods produce very similar jaw-
rotation time series. Frequent, smallmagnitude oscillations were apparent in the position-based time 
series compared with the orientation-based data, suggesting an increase in high-frequency artifact as a 
result of dual sensor use. From a signal-processing perspective, the positionderived angle is based on 
the difference of two sensor measurements, an operation that acts as a mathematical differentiator 
and therefore amplifies high-frequency noise. The orientation-derived angle does not require such a 
difference to be calculated. In consequence, the single-sensor method shows less sensitivity to high-
frequency artifact. The dual-sensor method tended to produced somewhat larger magnitude estimates 



of movement amplitude, which did not reflect a constant offset from the single-sensor data over time. 
Such an effect may reflect a compounding of the sensor tracking error of the EMA system, suggesting 
that the single-sensor, orientation-based approach is more reliable. 

Given the relative ease of participant preparation for the single-sensor method, the findings of 
Experiment 1 support the goal of developing an approach that is more feasible within clinical settings 
without compromising the accuracy of the physiological measurements. All told, the process of 
participant preparation typically takes less than 10 min and requires minimal effort from the talker. 
Although the current study used read, connected speech, the approach could be adapted for a variety 
of tasks, from nonspeech oral movements (e.g., Ballard et al., 2009) to conversational speech (e.g., 
Rosen, Kent, Delaney, & Duffy, 2016). Only the process of segmenting the resulting data to demarcate 
the pertinent time intervals over which measures are made would be affected by task changes. All 
other aspects of data postprocessing and analysis are effectively automated. 

Because the proposed method successfully uses quaternion rotation data, it establishes a basis for 
expanding the use of such data in kinematic analysis. Whereas the jaw offers an obvious context for 
using orientation data, due to the large rotational component of jaw movement, rotational data may 
also be useful in characterizing other aspects of articulation, such as tongue movement. Preliminary 
work in our lab has explored a method for estimating surface contours on the tongue using only two or 
three EMA sensors (Kolb et al., 2015). Successful development of such an approach could substantially 
expand the value of EMA data by effectively improving the spatial resolution of EMA data and 
providing a more complete characterization of tongue shapes and movements. 

Table 4. Jaw-rotation measures for talkers with dysarthria: M (SD). 
 

Segment MnPA 
(%) 

MdPA 
(%) 

MxPA 
(%) 

CV Strokes NJCs PAVe 
(°/s) 

PAVd 
(°/s) 

Women         

D04F         
Segment 11 35 36 60 41 24 136 85 −64 
Segment 17 43 48 72 40 69 23,100 110 −183 
Segment 1 63 72 100 43 54 11,900 104 −215 
Segment 15 39 47 63 45 55 5,490 100 −135 
D91F         
Segment 11 40 42 100 56 12 7 76 −45 
Segment 17 42 45 91 46 62 5,800 55 −68 
Segment 1 28 27 60 54 26 281 39 −32 
Segment 15 37 35 82 56 42 1,280 57 −46 

D92F         
Segment 11 20 19 44 62 8 2 13 −25 
Segment 17 24 22 78 50 87 22,800 25 −37 
Segment 1 20 15 61 83 27 122 24 −31 
Segment 15 20 18 70 62 57 4,190 16 −41 
D93F         
Segment 11 28 28 56 57 11 4 28 −38 
Segment 17 20 19 74 63 126 65,100 50 −65 
Segment 1 23 20 69 74 27 237 29 −52 
Segment 15 22 23 54 54 43 997 41 −43 



Men         

D08M         

Segment 11 32 30 75 68 44 1,310 29 −45 
Segment 17 36 35 82 45 131 122,000 38 −41 
Segment 1 39 42 76 42 37 835 38 −38 
Segment 15 38 36 92 53 66 12,000 48 −70 
D09M         
Segment 11 26 25 48 45 17 12 30 −38 
Segment 17 32 30 65 46 110 22,600 42 −31 
Segment 1 33 33 62 33 40 343 22 −19 
Segment 15 24 21 67 61 71 2,180 26 −32 
D94M         
Segment 11 37 38 73 52 8 4 73 −56 
Segment 17 37 36 100 52 69 4,810 61 −76 
Segment 1 26 22 67 56 28 137 60 −26 
Segment 15 30 29 79 51 37 691 56 −43 

Note. Boldface indicates values that are more than 2 SDs from the mean for typical talkers of the same sex. 
MnPA = mean percent angle; 
MdPA = median percent angle; MxPA = maximum percent angle; CV = coefficient of variation; NJCs = normalized 
jerk cost—scaled; PAVe = 
peak angular velocity—elevate; PAVd = peak angular velocity—depress. 
 

Experiment 2 
The current results indicate that typical female talkers exhibit higher angular velocities of jaw 
movement than male talkers, and male talkers exhibit proportionally larger peak jaw opening. 
However, the relatively high standard deviations in these data suggest notable overlap across sex. As a 
consequence, although sex differences may be possible, further work will most certainly be required to 
examine these differences in a more robust fashion. Consistent with previous findings, data from 
Segments 1 and 15 indicated relatively higher jaw-elevation velocities than depression velocities for 
typical talkers (Gracco, 1994). However, an opposite pattern was observed for Segments 11 and 17, for 
which jaw-depression velocities tended to be higher than jaw-elevation velocities. These results 
suggest that linguistic factors specific to the segments analyzed influence movement patterns. In part, 
this difference between current results and previous findings may reflect our use of relatively long 
(breath-group-based) segments for analysis in this study, compared with the substantially shorter 
analysis segments (e.g., phonemes or gestures within phonemes) that have been more typically used in 
prior work. The use of breath-group-based segments may be justified on the basis of the fact that such 
units can be useful in characterizing the intelligibility of connected speech (Yunusova, Weismer, Kent, 
& Rusche, 2005). As a result, such units may have practical value at multiple levels of analysis, allowing 
corresponding perceptual, acoustic, and physiological measurements. Another practical benefit of 
using relatively long segments, such as breath groups, is that the time burden of manually segmenting 
assessment data is reduced, because fewer intervals must be manually demarcated by the clinician 
during the process of data analysis. 

The results obtained for talkers with dysarthria reveal wide idiosyncrasy with little evidence of general 
patterns. Measures of jaw-rotation velocity in particular revealed highly idiosyncratic results among 



talkers with dysarthria. As suggested earlier, Segments 1 and 15 of the script elicited jaw-velocity 
effects that were generally consistent with expectations on the basis of the literature. In particular, jaw 
elevations were typically faster than depressions (Gracco, 1994). This pattern appeared to be true for 
participants D91F and D94M. On the other hand, participants D04F, D92F, and D08M all exhibited an 
opposite pattern for these segments, with depressions occurring at higher velocities than jaw 
elevations. Participant D09M exhibited a mixed pattern with relatively faster jaw elevations than 
depressions for Segment 1 and the opposite result for Segment 15. For Segments 11 and 17 of the 
reading script, which tended to elicit faster depressions than elevations for typical talkers, two 
participants with dysarthria (D92F and D93F) exhibited patterns consistent with the tendencies of 
typical talkers. All other participants with dysarthria (D04F, D91F, D94M, and D09M) exhibited mixed 
patterns across Segments 11 and 17, evincing no consistent relationship between the velocity and 
directionality of jaw movement. In general, there appeared to be little evidence of notable differences 
in jaw-movement velocities for talkers with dysarthria compared with typical participants, except in 
the case of participant D04F, who tended toward much faster rates of jaw movement than typical. 

With regard to jaw-movement amplitude, only participants D04F and D91F showed sizable differences 
in movement amplitude compared with typical talkers for more than one segment and measure. In 
both cases, differences suggest a tendency toward somewhat larger jaw movements than typical. 
These two participants were quite different with regard to the perceptual features of dysarthria and 
severity, with D04F exhibiting quite profound impairment and being nonfunctional at the 
conversational level, and D91F presenting with conversational speech intelligibility within functional 
limits. Solely on the basis of this very limited data set, there does not appear to be a predictable 
relationship between the severity of dysarthria and jaw-movement amplitude. 

All participants with dysarthria showed apparently reduced movement smoothness compared with the 
typical talkers for multiple segments for measures of strokes and normalized jerk costs. None showed 
differences in smoothness on the basis of the coefficient of variation measure. For most talkers with 
dysarthria these differences were evident even for the shortest breath groups, and the magnitudes of 
these differences were further increased for longer breath groups. In addition, most of these talkers 
showed notable increases in both measures between Segments 1 and 15 from the beginning and end 
of the passage, suggesting movement changes over time. Such an observation might be taken as an 
indication of fatigue, but the lack of corresponding changes in other kinematic parameters (i.e., 
changes in velocity or amplitude of movement over time) makes such an interpretation seem highly 
speculative. Only participant D04F exhibited apparent declines in movement velocity between 
Segments 1 and 15, and these were observed only for jaw depression. Another consideration is that 
talkers with dysarthria may have reduced speaking rate over time, resulting in a potential confound for 
measures of smoothness. 

Reduced speaking rate is known to affect speech kinematics. In particular, reduced speaking rate alters 
movements such that the typically singular acceleration and deceleration components of a movement 
(often described as a unimodal velocity profile) become multiple within a movement pattern (Adams et 
al., 1993). Movements characterized by multiple velocity peaks will undoubtedly result in decreased 
measures of smoothness. As a consequence, the relatively less-smooth movements found in the 



current work for talkers with dysarthria may be confounded by the typically reduced speaking rates 
observed for these talkers. 

Conclusions 
Preliminary analyses of jaw rotations during connected speech suggest that there may be some 
measurable differences between talkers with dysarthria and typical talkers, particularly for metrics 
characterizing the number of directional changes in a movement and the smoothness of the 
movement pattern. However, the wide range of idiosyncrasy apparent in both typical talkers and 
talkers with dysarthria suggests that the value of these measures should be interpreted with great 
caution. Similar conclusions may be drawn regarding the finding that most talkers with dysarthria 
showed increases in the number of strokes and normalized jerk costs over the course of the reading 
passage. Such results may suggest that there may be value in exploring the possibility that such 
changes are a reflection of differences in speech abilities, such as increased fatigability compared with 
typical talkers, but the idiosyncrasy of these results and very modest number of participants suggest 
that such conclusions would be highly speculative. Moreover, given that the measures that tended to 
differentiate talkers with dysarthria from typical talkers were primarily related to movement 
smoothness, these measures are likely sensitive to reduced speaking rate, which was affected to some 
degree for all participants with dysarthria. 

Follow-up work will need to directly examine the effects of speaking rate to determine whether or not 
the influence of speaking rate on movement smoothness can be dissociated from other factors. One 
approach would be to compare measures of smoothness across gradations of speaking rate for typical 
talkers as a basis for evaluating the magnitude of smoothness changes for talkers with dysarthria. 
Ensuing analyses will also need to focus on data from a larger cohort of participants to provide a more 
substantial normative data set and allow for a statistically robust appraisal of whether kinematic 
measures may differentiate talkers with dysarthria by type, severity, and etiology. Also, although the 
current study examined movements of a single articulator for the purposes of appraising a method for 
using EMA sensor orientation data, the analysis of a single articulator, such as the jaw, is insufficient to 
meet the needs of physiologic assessment in dysarthria. An important motivation for the development 
of clinically feasible methods of physiologic assessment is to bolster the capacity to characterize 
differential impairments within and across speech subsystems and foster the capacity to identify and 
differentiate primary and secondary features of dysarthria. The capacity to collect and analyze 
physiologic data from multiple articulators and subsystems in conjunction with perceptual and acoustic 
data may be critical to this endeavor. 
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