4 research outputs found

    A Framework and Classification for Fault Detection Approaches in Wireless Sensor Networks with an Energy Efficiency Perspective

    Get PDF
    Wireless Sensor Networks (WSNs) are more and more considered a key enabling technology for the realisation of the Internet of Things (IoT) vision. With the long term goal of designing fault-tolerant IoT systems, this paper proposes a fault detection framework for WSNs with the perspective of energy efficiency to facilitate the design of fault detection methods and the evaluation of their energy efficiency. Following the same design principle of the fault detection framework, the paper proposes a classification for fault detection approaches. The classification is applied to a number of fault detection approaches for the comparison of several characteristics, namely, energy efficiency, correlation model, evaluation method, and detection accuracy. The design guidelines given in this paper aim at providing an insight into better design of energy-efficient detection approaches in resource-constraint WSNs

    Survivability modeling for cyber-physical systems subject to data corruption

    Get PDF
    Cyber-physical critical infrastructures are created when traditional physical infrastructure is supplemented with advanced monitoring, control, computing, and communication capability. More intelligent decision support and improved efficacy, dependability, and security are expected. Quantitative models and evaluation methods are required for determining the extent to which a cyber-physical infrastructure improves on its physical predecessors. It is essential that these models reflect both cyber and physical aspects of operation and failure. In this dissertation, we propose quantitative models for dependability attributes, in particular, survivability, of cyber-physical systems. Any malfunction or security breach, whether cyber or physical, that causes the system operation to depart from specifications will affect these dependability attributes. Our focus is on data corruption, which compromises decision support -- the fundamental role played by cyber infrastructure. The first research contribution of this work is a Petri net model for information exchange in cyber-physical systems, which facilitates i) evaluation of the extent of data corruption at a given time, and ii) illuminates the service degradation caused by propagation of corrupt data through the cyber infrastructure. In the second research contribution, we propose metrics and an evaluation method for survivability, which captures the extent of functionality retained by a system after a disruptive event. We illustrate the application of our methods through case studies on smart grids, intelligent water distribution networks, and intelligent transportation systems. Data, cyber infrastructure, and intelligent control are part and parcel of nearly every critical infrastructure that underpins daily life in developed countries. Our work provides means for quantifying and predicting the service degradation caused when cyber infrastructure fails to serve its intended purpose. It can also serve as the foundation for efforts to fortify critical systems and mitigate inevitable failures --Abstract, page iii

    EFFICIENT PARAMETRIC AND NON-PARAMETRICLOCALIZATION AND MAPPING IN ROBOTIC NETWORKS

    Get PDF
    Since the eighties localization and mapping problems have attracted the efforts of robotics researchers. However in the last decade, thanks to the increasing capabilities of the new electronic devices, many new related challenges have been posed, such as swarm robotics, aerial vehicles, autonomous cars and robotics networks. Efficiency, robustness and scalability play a key role in these scenarios. Efficiency is intended as an ability for an application to minimize the resources usage, in particular CPU time and memory space. In the aforementioned applications an underlying communication network is required so, for robustness we mean asynchronous algorithms resilient to delays and packet-losses. Finally scalability is the ability of an application to continue functioning without any dramatic performance degradation even if the number of devices involved keep increasing. In this thesis the interest is focused on parametric and non-parametric estimation algorithms ap- plied to localization and mapping in robotics. The main contribution can be summarized in the following four arguments: (i) Consensus-based localization We address the problem of optimal estimating the position of each agent in a network from relative noisy vectorial distances with its neighbors by means of only local communication and bounded complexity, independent of network size and topology. In particular we propose a consensus-based algorithm with the use of local memory variables which allows asynchronous implementation, has guaranteed exponential convergence to the optimal solution under simple deterministic and randomized communication protocols, and requires minimal packet transmission. In the randomized scenario, we then study the rate of convergence in expectation of the estimation error and we argue that it can be used to obtain upper and lower bound for the rate of converge in mean square. In particular, we show that for regular graphs, such as Cayley, Ramanujan, and complete graphs, the convergence rate in expectation has the same asymptotic degradation of memoryless asynchronous consensus algorithms in terms of network size. In addition, we show that the asynchronous implementation is also robust to delays and communication failures. We finally complement the analytical results with some numerical simulations, comparing the proposed strategy with other algorithms which have been recently proposed in the literature. (ii) Aerial Vehicles distributed localization: We study the problem of distributed multi- agent localization in presence of heterogeneous measurements and wireless communication. The proposed algorithm integrates low precision global sensors, like GPS and compasses, with more precise relative position (i.e., range plus bearing) sensors. Global sensors are used to reconstruct the absolute position and orientation, while relative sensors are used to retrieve the shape of the formation. A fast distributed and asynchronous linear least-squares algorithm is proposed to solve an approximated version of the non-linear Maximum Likelihood problem. The algorithm is provably shown to be robust to communication losses and random delays. The use of ACK-less broadcast-based communication protocols ensures an efficient and easy implementation in real world scenarios. If the relative measurement errors are sufficiently small, we show that the algorithm attains a solution which is very close to the maximum likelihood solution. The theoretical findings and the algorithm performances are extensively tested by means of Monte-Carlo simulations. (iii) Estimation and Coverage: We address the problem of optimal coverage of a region via multiple robots when the sensory field used to approximate the density of event appearance is not known in advance. We address this problem in the context of a client-server architecture in which the mobile robots can communicate with a base station via a possibly unreliable wireless network subject to packet losses. Based on Gaussian regression which allows to estimate the true sensory field with any arbitrary accuracy, we propose a randomised strategy in which the robots and the base station simultaneously estimate the true sensory distribution by collecting measurements and compute the corresponding optimal Voronoi partitions. This strategy is designed to promote exploration at the beginning and then smoothly transition to station the robots at the centroid of the estimated optimal Voronoi partitions. Under mild assumptions on the transmission failure probability, we prove that the proposed strategy guarantees the convergence of the estimated sensory field to the true field and that the corresponding Voronoi partitions asymptotically becomes arbitrarily close to an optimal Voronoi partition. Additionally, we also provide numerically efficient approximation that trade-off accuracy of the estimated map for reduced memory and CPU complexity. Finally, we provide a set of extensive simulations which confirm the effectiveness of the proposed approach. (iv) Non-parametric estimation of spatio-temporal fields: We address the problem of efficiently and optimally estimating an unknown time-varying function through the collection of noisy measurements. We cast our problem in the framework of non-parametric estimation and we assume that the unknown function is generated by a Gaussian process with a known covariance. Under mild assumptions on the kernel function, we propose a solution which links the standard Gaussian regression to the Kalman filtering thanks to the exploitation of a grid where measurements collection and estimation take place. This work show an efficient in time and space method to estimate time-varying function, which combine the advantages of the Gaussian regression, e.g. model-less, and of the Kalman filter, e.g. efficiency
    corecore