2 research outputs found

    Response adaptive modelling for reducing the storage and computation of RSS-based VLP

    Get PDF
    The precise (location) tracking of automated guided vehicles will be key in enlarging the productivity, efficiency and safety in the connected warehouse or production infrastructure. Combining the modest price tag, the adequate coverage and the potential centimetre accuracy makes Visible Light Positioning (VLP) systems appealing as replacements for the current, high-cost, tracking systems. Model-fingerprinting-based received signal strength (RSS) VLP enables the required accuracy. It requires an elaborate optical channel model fingerprinted in a fine-grained, and predefined positioning grid. Depending on the grid's granularity, constructing the fingerprint database demands a significant computation and storage effort. This paper employs response adaptive or sequential experimental design to form sparse channel models, vastly reducing the storage and computation. It is shown that model-fingerprinting-based RSS only requires modelling less than 1 percent of the grid points, in an elementary positioning cell. The sparse model can be re-evaluated as a way to cope with environment changeover. Model recomputation as a way of compensating for LED ageing is also studied

    A Vision/Inertia Integrated Positioning Method Using Position and Orientation Matching

    Get PDF
    A vision/inertia integrated positioning method using position and orientation matching which can be adopted on intelligent vehicle such as automated guided vehicle (AGV) and mobile robot is proposed in this work. The method is introduced firstly. Landmarks are placed into the navigation field and camera and inertial measurement unit (IMU) are installed on the vehicle. Vision processor calculates the azimuth and position information from the pictures which include artificial landmarks with the known direction and position. Inertial navigation system (INS) calculates the azimuth and position of vehicle in real time and the calculated pixel position of landmark can be computed from the INS output position. Then the needed mathematical models are established and integrated navigation is implemented by Kalman filter with the observation of azimuth and the calculated pixel position of landmark. Navigation errors and IMU errors are estimated and compensated in real time so that high precision navigation results can be got. Finally, simulation and test are performed, respectively. Both simulation and test results prove that this vision/inertia integrated positioning method using position and orientation matching has feasibility and it can achieve centimeter-level autonomic continuous navigation
    corecore