24 research outputs found

    Sensor Networks and Their Applications: Investigating the Role of Sensor Web Enablement

    Get PDF
    The Engineering Doctorate (EngD) was conducted in conjunction with BT Research on state-of-the-art Wireless Sensor Network (WSN) projects. The first area of work is a literature review of WSN project applications, some of which the author worked on as a BT Researcher based at the world renowned Adastral Park Research Labs in Suffolk (2004-09). WSN applications are examined within the context of Machine-to-Machine (M2M); Information Networking (IN); Internet/Web of Things (IoT/WoT); smart home and smart devices; BT’s 21st Century Network (21CN); Cloud Computing; and future trends. In addition, this thesis provides an insight into the capabilities of similar external WSN project applications. Under BT’s Sensor Virtualization project, the second area of work focuses on building a Generic Architecture for WSNs with reusable infrastructure and ‘infostructure’ by identifying and trialling suitable components, in order to realise actual business benefits for BT. The third area of work focuses on the Open Geospatial Consortium (OGC) standards and their Sensor Web Enablement (SWE) initiative. The SWE framework was investigated to ascertain its potential as a component of the Generic Architecture. BT’s SAPHE project served as a use case. BT Research’s experiences of taking this traditional (vertical) stove-piped application and creating SWE compliant services are described. The author’s findings were originally presented in a series of publications and have been incorporated into this thesis along with supplementary WSN material from BT Research projects. SWE 2.0 specifications are outlined to highlight key improvements, since work began at BT with SWE 1.0. The fourth area of work focuses on Complex Event Processing (CEP) which was evaluated to ascertain its potential for aggregating and correlating the shared project sensor data (‘infostructure’) harvested and for enabling data fusion for WSNs in diverse domains. Finally, the conclusions and suggestions for further work are provided

    Design Strategies for Adaptive Social Composition: Collaborative Sound Environments

    Get PDF
    In order to develop successful collaborative music systems a variety of subtle interactions need to be identified and integrated. Gesture capture, motion tracking, real-time synthesis, environmental parameters and ubiquitous technologies can each be effectively used for developing innovative approaches to instrument design, sound installations, interactive music and generative systems. Current solutions tend to prioritise one or more of these approaches, refining a particular interface technology, software design or compositional approach developed for a specific composition, performer or installation environment. Within this diverse field a group of novel controllers, described as ‘Tangible Interfaces’ have been developed. These are intended for use by novices and in many cases follow a simple model of interaction controlling synthesis parameters through simple user actions. Other approaches offer sophisticated compositional frameworks, but many of these are idiosyncratic and highly personalised. As such they are difficult to engage with and ineffective for groups of novices. The objective of this research is to develop effective design strategies for implementing collaborative sound environments using key terms and vocabulary drawn from the available literature. This is articulated by combining an empathic design process with controlled sound perception and interaction experiments. The identified design strategies have been applied to the development of a new collaborative digital instrument. A range of technical and compositional approaches was considered to define this process, which can be described as Adaptive Social Composition. Dan Livingston

    Enmeshed 3

    Get PDF
    Enmeshed 3, for cello and live electronics, is the third in a series of works in which a solo instrument becomes ‘enmeshed’ in multiple layers of transformations derived from the live performance. The works are shaped and structured in terms of the varying relationships between these layers and the ‘distances’ between the original acoustic performance and the various transformations, in terms of pitch, time delay, timbre, texture and space. At certain points in the work these almost converge whilst at other times large distances open up, with the different layers in a wild counterpoint. All the sounds in the work derive from live transformation of the soloist's performance. The composer’s own granular synthesis algorithms play a significant role in these transformations. Multichannel spatialisation also plays an important part in terms of spatial positioning and movement, the creation of different virtual spatial environments and in the definition of different layers. It can be performed variously with between 8 and 24 channels. Enmeshed 3 is in five contrasting but inter-related sections centering around a long slow meditative central passage. It was written for Madeleine Shapiro who premiered it at the New York City Electroacoustic Music Festival in April 2013

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Forschungsbericht UniversitÀt Mannheim 2008 / 2009

    Full text link
    Die UniversitÀt Mannheim hat seit ihrer Entstehung ein spezifisches Forschungsprofil, welches sich in ihrer Entwicklung und derz eitigen Struktur deutlich widerspiegelt. Es ist geprÀgt von national und international sehr anerkannten Wirtschafts- und Sozialwissenschaften und deren Vernetzung mit leistungsstarken Geisteswissenschaften, Rechtswissenschaft sowie Mathematik und Informatik. Die UniversitÀt Mannheim wird auch in Zukunft einerseits die Forschungsschwerpunkte in den Wirtschafts- und Sozialwissenschaften fördern und andererseits eine interdisziplinÀre Kultur im Zusammenspiel aller FÀcher der UniversitÀt anstreben

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp
    corecore