1,038 research outputs found

    Analysis of Energy Consumption Performance towards Optimal Radioplanning of Wireless Sensor Networks in Heterogeneous Indoor Environments

    Get PDF
    In this paper the impact of complex indoor environment in the deployment and energy consumption of a wireless sensor network infrastructure is analyzed. The variable nature of the radio channel is analyzed by means of deterministic in-house 3D ray launching simulation of an indoor scenario, in which wireless sensors, based on an in-house CyFi implementation, typically used for environmental monitoring, are located. Received signal power and current consumption measurement results of the in-house designed wireless motes have been obtained, stating that adequate consideration of the network topology and morphology lead to optimal performance and power consumption reduction. The use of radioplanning techniques therefore aid in the deployment of more energy efficient elements, optimizing the overall performance of the variety of deployed wireless systems within the indoor scenario

    A prototype node for wireless vision sensor network applications development

    Get PDF
    This paper presents a prototype vision-enabled sensor node based on a commercial vision system of reduced size and power consumption. The wireless infrastructure for the deployment of a distributed smart camera network based on these nodes is provided by commercial motes. The smart camera, based on a low-power bio-inspired processing scheme, enables in-node image processing and vision tools. This permits to elaborate a lighter representation of the scene, keeping the relevant information in terms of detected elements, features and events, alleviating the data transmission through the network. Therefore by passing only the relevant information to the neighboring sensor nodes, distributed and collaborative vision is possible with the limited data rates available in commercial wireless sensor networks. Communication between the different components of the system is supported by the available UARTs and GPIOs. Several examples of in-node image processing and feature detection has been tested in the prototype, and information at different abstraction levels has been broadcasted to the network.Junta de AndalucĂ­a 2006-TIC-2352Ministerio de Ciencia e InnovaciĂłn TEC2009-1181

    A Survey on Facilities for Experimental Internet of Things Research

    Get PDF
    International audienceThe initial vision of the Internet of Things (IoT) was of a world in which all physical objects are tagged and uniquelly identified by RFID transponders. However, the concept has grown into multiple dimensions, encompassing sensor networks able to provide real-world intelligence and goal-oriented collaboration of distributed smart objects via local networks or global interconnections such as the Internet. Despite significant technological advances, difficulties associated with the evaluation of IoT solutions under realistic conditions, in real world experimental deployments still hamper their maturation and significant roll out. In this article we identify requirements for the next generation of the IoT experimental facilities. While providing a taxonomy, we also survey currently available research testbeds, identify existing gaps and suggest new directions based on experience from recent efforts in this field

    An Outline of Security in Wireless Sensor Networks: Threats, Countermeasures and Implementations

    Full text link
    With the expansion of wireless sensor networks (WSNs), the need for securing the data flow through these networks is increasing. These sensor networks allow for easy-to-apply and flexible installations which have enabled them to be used for numerous applications. Due to these properties, they face distinct information security threats. Security of the data flowing through across networks provides the researchers with an interesting and intriguing potential for research. Design of these networks to ensure the protection of data faces the constraints of limited power and processing resources. We provide the basics of wireless sensor network security to help the researchers and engineers in better understanding of this applications field. In this chapter, we will provide the basics of information security with special emphasis on WSNs. The chapter will also give an overview of the information security requirements in these networks. Threats to the security of data in WSNs and some of their counter measures are also presented

    Telepathically urban

    Get PDF
    Proposals for ubiquitous computing have taken a variety of forms, from “utility fogs” to “pervasive networks.” This chapter considers smart dust as a hypothetical and actual proposal made for pervasive computing in an urban context. Proposals for smart dust have been developed in the form of tiny wireless sensors that could be released en masse, so that countless machines are in constant relay, coordinating information about an environment. Wireless sensors, distributed and embedded in environments, move the “information city” from a zone where digital media is produced and circulated by media workers, to a space where the city itself is a site of information generation – an urban information ecology. This sensor technology is less concerned with increasing computing power and more attentive to reducing the size of hardware, a technological shift that would allow millions of tiny machines to be deployed in drifts of simultaneous communication. In order to examine further the modalities of machine-to-machine communication, this chapter engages with the notion of telepathy, or literally, “remote sensation,” which could be seen to be invisible and instant communication beyond the channels of human sense. This is a process of displaced sensation, of sensing in an extraordinary capacity, or of communicating impressions beyond the reach of usual communicative practices. Wireless sensors – particularly in the more hypothetical form of smart dust – perform this removal and rerouting of sensation. Urban ecologies are monitored, programmed, and made into transmittable information, but this sensory information transpires through relatively opaque machinic spaces – and the messages circulated may be decoded as much through conjecture as clear communication. Originally developed through the Culture of Cities project in 2004, this chapter considers urban environments as spaces of informational correspondence, and discusses early notions around the Internet migrating to environmental operations

    BIM and sensor-based data management system for construction safety monitoring

    Get PDF
    Purpose This research aims to investigate the integration of real-time monitoring of thermal conditions within confined work environments through wireless sensor network (WSN) technology when integrated with building information modelling (BIM). A prototype system entitled confined space monitoring system (CoSMoS), which provides an opportunity to incorporate sensor data for improved visualization through new add-ins to BIM software, was then developed. Design/methodology/approach An empirical study was undertaken to compare and contrast between the performances (over a time series) of various database models to find a back-end database storage configuration that best suits the needs of CoSMoS. Findings Fusing BIM data with information streams derived from wireless sensors challenges traditional approaches to data management. These challenges encountered in the prototype system are reported upon and include issues such as hardware/software selection and optimization. Consequently, various database models are explored and tested to find a database storage that best suits the specific needs of this BIM-wireless sensor technology integration. Originality value This work represents the first tranche of research that seeks to deliver a fully integrated and advanced digital built environment solution for automating the management of health and safety issues on construction sites. </jats:sec

    Pervasive Games in a Mote-Enabled Virtual World Using Tuple Space Middleware

    Get PDF
    Pervasive games are a new and exciting field where the user experience benefits from the blending of real and virtual elements. Players are no longer confined to computer screens. Rather, interactions with devices embedded within the real world and physical movements become an integral part of the gaming experience. Several prototypes of pervasive games have been proposed by both industry and academia. However, in such games the issues arising from the integration of players and real world, the management of the context surrounding the players, and the need for communication and distributed coordination are often addressed in an ad-hoc fashion. Therefore, the underlying software fabric is often not reusable, ultimately slowing down the diffusion of pervasive games. In this paper we describe the design and implementation of a pervasive game on top of TinyLIME, a middleware system supporting data sharing among mobile and embedded devices. By illustrating the design of a pervasive game we developed, we argue concretely that the programming abstractions supported by TinyLIME greatly simplify the data and context management characteristics of pervasive games, and provide an effective and reusable building block for their development. TinyLIME was originally designed to support applications where mobile users collect data from sensors scattered in the physical environment. We build upon this capability to put forth a second contribution, namely, the use of wireless sensor devices (or motes) as a computing platform for pervasive games. Besides reporting physical data for the sake of the game, we use motes to store information relevant to the game plot, e.g., virtual objects. Motes are typically very small in size, and therefore can be hidden in the environment, enhancing the sense of immersion in a virtual world. To the best of our knowledge, this original use of wireless sensor devices is novel in the scientific and gaming literature. Furthermore, it is naturally supported by TinyLIME, yielding a unified programming abstraction that spans the heterogeneous gaming platform we propose

    City Data Fusion: Sensor Data Fusion in the Internet of Things

    Full text link
    Internet of Things (IoT) has gained substantial attention recently and play a significant role in smart city application deployments. A number of such smart city applications depend on sensor fusion capabilities in the cloud from diverse data sources. We introduce the concept of IoT and present in detail ten different parameters that govern our sensor data fusion evaluation framework. We then evaluate the current state-of-the art in sensor data fusion against our sensor data fusion framework. Our main goal is to examine and survey different sensor data fusion research efforts based on our evaluation framework. The major open research issues related to sensor data fusion are also presented.Comment: Accepted to be published in International Journal of Distributed Systems and Technologies (IJDST), 201
    • 

    corecore