1,967 research outputs found

    Interpretation of Neural Networks is Fragile

    Full text link
    In order for machine learning to be deployed and trusted in many applications, it is crucial to be able to reliably explain why the machine learning algorithm makes certain predictions. For example, if an algorithm classifies a given pathology image to be a malignant tumor, then the doctor may need to know which parts of the image led the algorithm to this classification. How to interpret black-box predictors is thus an important and active area of research. A fundamental question is: how much can we trust the interpretation itself? In this paper, we show that interpretation of deep learning predictions is extremely fragile in the following sense: two perceptively indistinguishable inputs with the same predicted label can be assigned very different interpretations. We systematically characterize the fragility of several widely-used feature-importance interpretation methods (saliency maps, relevance propagation, and DeepLIFT) on ImageNet and CIFAR-10. Our experiments show that even small random perturbation can change the feature importance and new systematic perturbations can lead to dramatically different interpretations without changing the label. We extend these results to show that interpretations based on exemplars (e.g. influence functions) are similarly fragile. Our analysis of the geometry of the Hessian matrix gives insight on why fragility could be a fundamental challenge to the current interpretation approaches.Comment: Published as a conference paper at AAAI 201

    Adversarial Training for Free!

    Full text link
    Adversarial training, in which a network is trained on adversarial examples, is one of the few defenses against adversarial attacks that withstands strong attacks. Unfortunately, the high cost of generating strong adversarial examples makes standard adversarial training impractical on large-scale problems like ImageNet. We present an algorithm that eliminates the overhead cost of generating adversarial examples by recycling the gradient information computed when updating model parameters. Our "free" adversarial training algorithm achieves comparable robustness to PGD adversarial training on the CIFAR-10 and CIFAR-100 datasets at negligible additional cost compared to natural training, and can be 7 to 30 times faster than other strong adversarial training methods. Using a single workstation with 4 P100 GPUs and 2 days of runtime, we can train a robust model for the large-scale ImageNet classification task that maintains 40% accuracy against PGD attacks. The code is available at https://github.com/ashafahi/free_adv_train.Comment: Accepted to NeurIPS 201

    Efficient Defenses Against Adversarial Attacks

    Full text link
    Following the recent adoption of deep neural networks (DNN) accross a wide range of applications, adversarial attacks against these models have proven to be an indisputable threat. Adversarial samples are crafted with a deliberate intention of undermining a system. In the case of DNNs, the lack of better understanding of their working has prevented the development of efficient defenses. In this paper, we propose a new defense method based on practical observations which is easy to integrate into models and performs better than state-of-the-art defenses. Our proposed solution is meant to reinforce the structure of a DNN, making its prediction more stable and less likely to be fooled by adversarial samples. We conduct an extensive experimental study proving the efficiency of our method against multiple attacks, comparing it to numerous defenses, both in white-box and black-box setups. Additionally, the implementation of our method brings almost no overhead to the training procedure, while maintaining the prediction performance of the original model on clean samples.Comment: 16 page
    • …
    corecore