2,033 research outputs found

    Fast and accurate con-eigenvalue algorithm for optimal rational approximations

    Full text link
    The need to compute small con-eigenvalues and the associated con-eigenvectors of positive-definite Cauchy matrices naturally arises when constructing rational approximations with a (near) optimally small LL^{\infty} error. Specifically, given a rational function with nn poles in the unit disk, a rational approximation with mnm\ll n poles in the unit disk may be obtained from the mmth con-eigenvector of an n×nn\times n Cauchy matrix, where the associated con-eigenvalue λm>0\lambda_{m}>0 gives the approximation error in the LL^{\infty} norm. Unfortunately, standard algorithms do not accurately compute small con-eigenvalues (and the associated con-eigenvectors) and, in particular, yield few or no correct digits for con-eigenvalues smaller than the machine roundoff. We develop a fast and accurate algorithm for computing con-eigenvalues and con-eigenvectors of positive-definite Cauchy matrices, yielding even the tiniest con-eigenvalues with high relative accuracy. The algorithm computes the mmth con-eigenvalue in O(m2n)\mathcal{O}(m^{2}n) operations and, since the con-eigenvalues of positive-definite Cauchy matrices decay exponentially fast, we obtain (near) optimal rational approximations in O(n(logδ1)2)\mathcal{O}(n(\log\delta^{-1})^{2}) operations, where δ\delta is the approximation error in the LL^{\infty} norm. We derive error bounds demonstrating high relative accuracy of the computed con-eigenvalues and the high accuracy of the unit con-eigenvectors. We also provide examples of using the algorithm to compute (near) optimal rational approximations of functions with singularities and sharp transitions, where approximation errors close to machine precision are obtained. Finally, we present numerical tests on random (complex-valued) Cauchy matrices to show that the algorithm computes all the con-eigenvalues and con-eigenvectors with nearly full precision

    Robust Estimation of the Correlation Matrix of Longitudinal Data

    Get PDF
    We propose a double-robust procedure for modeling the correlation matrix of a longitudinal dataset. It is based on an alternative Cholesky decomposition of the form Σ=DLL ⊤ D where D is a diagonal matrix proportional to the square roots of the diagonal entries of Σ and L is a unit lower-triangular matrix determining solely the correlation matrix. The first robustness is with respect to model misspecification for the innovation variances in D, and the second is robustness to outliers in the data. The latter is handled using heavy-tailed multivariate t-distributions with unknown degrees of freedom. We develop a Fisher scoring algorithm for computing the maximum likelihood estimator of the parameters when the nonredundant and unconstrained entries of (L,D) are modeled parsimoniously using covariates. We compare our results with those based on the modified Cholesky decomposition of the form LD 2 L ⊤ using simulations and a real dataset

    Application-tailored Linear Algebra Algorithms: A search-based Approach

    Full text link
    In this paper, we tackle the problem of automatically generating algorithms for linear algebra operations by taking advantage of problem-specific knowledge. In most situations, users possess much more information about the problem at hand than what current libraries and computing environments accept; evidence shows that if properly exploited, such information leads to uncommon/unexpected speedups. We introduce a knowledge-aware linear algebra compiler that allows users to input matrix equations together with properties about the operands and the problem itself; for instance, they can specify that the equation is part of a sequence, and how successive instances are related to one another. The compiler exploits all this information to guide the generation of algorithms, to limit the size of the search space, and to avoid redundant computations. We applied the compiler to equations arising as part of sensitivity and genome studies; the algorithms produced exhibit, respectively, 100- and 1000-fold speedups
    corecore