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Robust Estimation of the Correlation Matrix of
Longitudinal Data

Mehdi Maadooliat, Mohsen Pourahmadi, and Jianhua Z. Huang

Abstract We propose a double-robust procedure for

modeling the correlation matrix of a longitudinal dataset.

It is based on an alternative Cholesky decomposition of

the form Σ = DLL>D where D is a diagonal ma-

trix proportional to the square roots of the diagonal

entries of Σ and L is a unit lower-triangular matrix

determining solely the correlation matrix. The first ro-

bustness is with respect to model misspecification for

the innovation variances in D, and the second is ro-

bustness to outliers in the data. The latter is handled

using heavy-tailed multivariate t-distributions with un-

known degrees of freedom. We develop a Fisher scoring

algorithm for computing the maximum likelihood esti-

mator of the parameters when the nonredundant and

unconstrained entries of (L,D) are modeled parsimo-

niously using covariates. We compare our results with

those based on the modified Cholesky decomposition of

the form LD2L> using simulations and a real dataset.

Keywords cholesky decomposition; correlation

modelling; multivariate t; robust estimation

1 Introduction

Longitudinal data arise frequently in the biomedical,

epidemiological and social sciences, where subjects are

measured repeatedly over time and the observations

on the same subject are intrinsically correlated (Diggle

et al. 2002). The technique of generalized estimating

equations (GEE) introduced in Liang & Zeger (1986) is

widely used when the focus is on modeling the mean.

In GEE and many of its extensions, in the interest

of expediency, parsimony and ensuring the positive-

definiteness of the estimated correlation matrix, it is
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common to pick a working correlation matrix, from a

long menu of structured correlation matrices. Although

consistency of the estimators of the mean parameters

is not affected, misspecification of the correlation may

result in a great loss of efficiency (Wang & Carey 2003)

and may lead to invalid inferences (Cannon et al. 2001,

Carroll 2003). The correlation matrix itself might be

of scientific interest (Diggle & Verbyla 1998) in which

case it is desirable to develop a bona fide data-based

framework for modeling correlation matrices following

the familiar three stages of model formulation, estima-

tion and diagnostics in the modeling process for the

mean vector (McCullagh & Nelder 1989). Attempts to

develop such methods have been made in recent years

by Chiu et al. (1996), Pourahmadi (1999, 2000), Pan

& MacKenzie (2003), Ye & Pan (2006), Lin & Wang

(2009), Leng et al. (2010) and references therein, using

the spectral and Cholesky decompositions of covariance

matrices, respectively.

A methodology based on the modified Cholesky de-

composition (M.CD) of the covariance matrix Σ of a

random vector y = (y1, . . . , yp)
> has proved quite suc-

cessful for longitudinal data in the sense that the positive-

definiteness of the estimated covariance is guaranteed

and parsimony can be achieved using covariates. How-

ever, it seems for historical reasons the focus has been

mostly on specific transitional models of autoregressive

(AR) type for the actual successive measurements on a

subject:

yt = φt,t−1yt−1 + . . .+φt,1y1 + εt, t = 1, 2, . . . , p, (1)

where the φt,j ’s are the so-called generalized autoregres-

sive parameters (GARPs) with φ1,0 = 0, and εt’s are the

prediction errors or innovations with V ar(εt) = σ2
t ; see

Pourahmadi (1999, 2000), Pan & MacKenzie (2003),

Ye & Pan (2006), Lin & Wang (2009), and Leng et al.

(2010). Although the idea of inverting the AR model
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(1) and writing it as a moving average (MA) of the

actual response in terms of the present and past inno-

vations was mentioned in (Pourahmadi 2001, Sec. 3.5),

the idea and its potentials have not been pursued vig-

orously in the literature of longitudinal and correlated

data. Given the duality and synergy between the AR

and MA models in the theory of finite parameter sta-

tionary time series (Brockwell & Davis 1991), one would

expect a level of similar fruitful connections to exist

between such type of models for nonstationary longi-

tudinal data. For example, inverting (1) gives rise to

the generalized moving average parameters (GMAPs)

which are known (Pourahmadi 2001, Sec. 3.5; Roth-

man et al. 2010) to be useful in parsimonious modeling

and guaranteeing the positive-definiteness of Σ itself.

These models, whether of AR or MA type, lead to a

factorization of the form Σ± = LD2L>, where Σ± in-

dicates either the covariance or the inverse covariance

matrix, and L,D are generic unit lower triangular and

diagonal matrices, respectively. Since D2 is trapped in

the middle, the correlation matrix corresponding toΣ±

depends on the innovation variances represented by the

diagonal entries of D2, and hence is not necessarily ro-

bust to their model misspecifications.

By contrast, there is an alternative Cholesky decom-

position (A.CD), due to Chen & Dunson (2003), which

is of the generic form Σ = DLL>D with the diago-

nal matrix D of innovation standard deviations placed

outside. Consequently, such factorization amounts to

directly modeling the covariance matrix but in a man-

ner that its estimated correlation matrix R does not

depend on the quality of modeling and estimation of

the innovation variances σ2
t ’s, see (3). In other words,

estimation of R is robust to misspecification of models

for σ2
t ’s, the component shared by both the M.CD and

A.CD. Beside this basic observation, not much is known

about the consequences of using A.CD in modeling co-

variance and correlation matrices other than Chen &

Dunson (2003), and Cai et al. (2006) in the context

of random-effects selection. This factorization is more

closely related to the MA representation of a “standard-

ized” version of repeated measures on a subject, see (2),

Pourahmadi (2007) and Rothman et al. (2010).

In this paper, our primary objective is to study some

of the consequences of modeling the components of the

A.CD factorization on estimating the correlation ma-

trix of longitudinal data. The secondary objective is

to have procedures for estimating correlation matrices

that are robust to outliers. We use the multivariate t

distributions with ν the degrees of freedom unknown, as

a model for the data and focus on accurate estimation

of the df .

We point out some other structural, computational

and statistical differences that exist between the M.CD

in Pourahmadi (2000) and the A.CD in Chen & Dunson

(2003). For example, recognizing that the M.CD and

A.CD of a covariance matrix correspond to AR and MA

representations of the underlying nonstationary longi-

tudinal data (Pourahmadi 2001, Sec. 3.5; Pourahmadi

2007, Rothman et al. 2010), therefore one expects more

computational difficulties in computing the MLE of the

parameters of the A.CD than those from M.CD (Brock-

well & Davis 1991, Chaps 5 and 9). In the A.CD frame-

work the focus is on modeling the covariance matrix,

while it is common to think of the M.CD framework

as being related to modeling the precision matrix (in-

verse covariance matrix). However, recently Rothman

et al. (2010) have proposed sparse estimation of Σ it-

self based on its M.CD and a related regression/MA

interpretation of the entries of the factors. They show

that there are significant structural and computational

differences when working with Σ, Σ−1 and their re-

spective correlation matrices. A somewhat surprising

result is that banding the Cholesky factor of the preci-

sion matrix coincides with constrained maximum like-

lihood, but banding the Cholesky factor of the covari-

ance matrix itself does not. Such results are based on

some interesting relationships between zero patterns of

covariance matrices and their Cholesky factors. For ex-

ample, the Cholesky factor of either the covariance ma-

trix or its inverse is k-banded if and only if the corre-

sponding matrix itself is k-banded, see Propositions 1-3

in Rothman et al. (2010).

The outline of the paper is as follows: In Section

2, M.CD and A.CD are reviewed along with the sta-

tistical interpretations of the entries of their Cholesky

decompositions. Section 3 discusses the multivariate t-

distribution and the MLE of its parameters with a par-

ticular focus on the orthogonality of the parameters es-

timate. Section 4 illustrates the methodology using a

real dataset, and assess its performance using a simu-

lation experiment. Section 5 concludes the paper.

2 M.CD and A.CD of a Covariance Matrix

In this section, we review properties of two distinct

Cholesky decompositions of the positive-definite covari-

ance matrix of a longitudinal dataset, and discuss their

roles in estimating the correlation matrix.

It is known that any p × p positive-definite covari-

ance matrix can be factorized as Σ = CC>, referred

to as its standard Cholesky decomposition, where C

is a unique lower triangular matrix with positive di-

agonal entries. What are the statistical relevance of

the diagonal and subdiagonals entries of C? Letting
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D = diag(c11, . . . , cpp), this factorization can take the

following two distinct forms depending on whether the

matrix D is inserted between the two lower triangular

matrices or outside.

The M.CD for Σ keeps D2 inside:

Σ = CD−1DDD−1C> = LD2L>,

where L = CD−1 is a “standardized” version of C, di-

viding each column by its diagonal entry. Defining T =

L−1, it is known (Pourahmadi 1999) that the entries

of T and D2, respectively, are negative of the GARPs

in (1) and the prediction error variances σ2
t ’s, when a

measurement is regressed on its predecessors. Details of

formulating parsimonious models using graphical tools

like regressograms and estimating the ensuing parame-

ters of T and D are given in Pourahmadi (1999).

The A.CD in Chen & Dunson (2003) keeps D out-

side:

Σ = DD−1CC>D−1D = DLL>D,

where now L = D−1C is obtained from C using a

slightly different “standardization”, namely dividing each

row of C by its diagonal entries. In Pourahmadi (2001,

2007), the statistical interpretation of entries of L is

given as the moving average coefficients when a stan-

dardized measurement is regressed on its past and present

innovations, see also Rothman et al. (2010). Let (y1, . . .,

yp)
> be a zero mean random vector with covariance ma-

trix Σ. Denote Lp×p = (θtj) and Dp×p = diag(σt). It’s

clear that D−1y has the covariance LL>. More pre-

cisely, defining ε = (DL)−1y, it follows that cov(ε) =

Ip and then D−1y = Lε, from which we obtain a

variable-order, varying-coefficients moving average rep-

resentation for the standardized yt/σt as:

yt/σt = εt +

t−1∑
j=1

θtjεj . (2)

From (2), for any 1 ≤ s, t ≤ p, with s ∧ t = min{s, t},
it follows that

cov(ys, yt) = σsσt

s∧t∑
j=1

θtjθsj ,

so that the correlation between ys and yt given by

corr(ys, yt) =

∑s∧t
j=1 θsjθtj√√√√(∑s

j=1 θ
2
sj

∑t
j=1 θ

2
tj

) , (3)

is solely determined by the L matrix. This property is a

great motivation for modeling a correlation matrix us-

ing A.CD, so that it is robust to model misspecifications

for the innovation variances, σ2
t , t = 1, . . . , p.

3 MLEs for the A.CD Model: The Multivariate

tν

The assumption of multivariate normality commonly

made for the vector of repeated measures on a subject

may not be tenable in many practical situations when

outliers exist or the underlying data exhibit heavy-tails.

In this situation, a number of authors have used the

multivariate t-distribution for robust estimation of the

parameters of general linear models (Zellner 1976, Lange

et al. 1989); Lin & Wang (2009) has used it for robust

estimation under the M.CD decomposition. Robust es-

timation for linear mixed models using the multivariate

t-distribution has been studied by Welsh & Richardson

(1997) and Pinheiro et al. (2001).

In the sequel, for i = 1, . . . , n, we assume that the

vector of repeated measures on the i-th subject yi ∼
t(µi,Σ, ν). This means that the p-dimensional vector

yi is following a multivariate t-distribution with degrees

of freedom (df) ν, location vector µi and scale matrix

Σ with the probability density function given as:

f(yi|µi , Σ, ν) =
Γ
(ν + p

2

)
Γ
(ν

2

)
(πν)p/2

|Σ|−1/2

×

(
1 +

(yi − µi)>Σ−1(yi − µi)
ν

)−(ν+p)/2
,

where ν is a positive real number. For ν > 1 the mean

vector is defined to be µi, the covariance matrix exists

for ν > 2 and is equal to
ν

ν − 2
Σ.

Following the general approach in Pourahmadi (2000),

Lin & Wang (2009) we model µi,L = (θtj) and D =

diag(σt) as:

µi = Xiβ, θtj = d(ztj ,γ), log σt = v(zt,λ), (4)

where d(·, ·), v(·, ·) are known functions, Xi, ztj and zt
are p×m, d× 1 and q × 1 matrices of covariates, β =

(β1, . . . , βm)>,γ = (γ1, . . . , γd)
> and λ = (λ1, . . . , λq)

>

are parameters of the mean, log-innovation and the

moving average parameters y in the A.CD, respectively.

When d(·, ·), v(·, ·) are polynomials, we use the notation

Poly(d, q) as a shorthand for two distinct polynomials

of degrees d, q in the lagged times (t − j) and t for θtj
and log σt, respectively. Specifically, in this case the co-

variates zt and ztj are of the form:

ztj = (1, (t− j), . . . , (t− j)d)>, j = 1, . . . , t− 1,

zt = (1, t, . . . , tq)>, t = 1, . . . , p.

For example, in most of our simulation work we use

Poly(3, 3) as models for the components of L,D.

Assuming m, q, and d are known, let θ = (β>,

γ>,λ>, ν)> be the partitioned vector of all parame-

ters in the model, then the log-likelihood function `(θ)
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is:

`(θ) = n

(
logΓ

(ν + p

2

)
− logΓ

(ν
2

)
− p

2
log(πν)

)

− n

2
log |D2| − 1

2
(ν + p)

n∑
i=1

log
(

1 +
∆i(β,γ,λ)

ν

)
,

where ∆i(β,γ,λ) := (yi −Xiβ)>Σ−1(yi −Xiβ). We

suppress its arguments and use the abbreviation ∆i in

the sequel.

3.1 Maximum Likelihood Estimation Using Fisher

Scoring

In this section, we study some computational and sta-

tistical implications of using covariates in the parsimo-

nious modeling of L in (4) as compared to the same ap-

proach in modeling T in the M.CD approach studied in

Pourahmadi (2000), Lin & Wang (2009). Similar to the

M.CD models, it turns out that there is no closed-form

solution for the MLEs of A.CD models, thus iterative

algorithms like the Newton-Raphson or Fisher scoring

as in Pourahmadi (2000) and Lin & Wang (2009) will

be developed here.

The Fisher scoring algorithm is developed in this

subsection. For the partitioning of θ as above, the blocks

of the score function U(θ) =
(
U>(β), U>(γ), U>(λ),

U(ν)
)>

can be obtained and simplified as:

U(β) =

n∑
i=1

ωiX
>
i Σ

−1ri,

U(γr) = tr

(
(TD−1)

( n∑
i=1

ωiSi

)
(TD−1)>TLγr

)
,

U(λs) = tr

((( n∑
i=1

ωiSi

)
Σ−1 − nI

)
D−1Dλs

)
,

U(ν) =
1

2

n∑
i=1

(
φ
(ν + p

2

)
− φ

(ν
2

)
− p

ν

− log
(

1 +
∆i

ν

)
+
ωi
ν
∆i

)
,

where r = 1, . . . , d, s = 1, . . . , q, Lγr =
∂

∂γr
L, Dλs

=

∂

∂λs
D, ωi =

ν + p

ν +∆i
, ri = (yi −Xiβ), Si = rir

>
i and

φ(x) = d
dx logΓ (x).

Now, we have the necessary ingredients to present

the Fisher information in terms of the blocks of a par-

titioned 4 × 4 matrix corresponding to β,γ,λ, and ν.

The blocks of the Fisher information that involve β (the

location parameter) are as follows:

I11(β) = −E(`ββ) =
ν + p

ν + p+ 2

n∑
i=1

X>i Σ
−1Xi,

I12(β,γ) = −E(`βγ) = 0,

I13(β,λ) = −E(`βλ) = 0,

I14(β, ν) = −E(`βν) = 0.

In addition, we obtain other blocks of the Fisher in-

formation matrix using Proposition 4 of Lange et al.

(1989). We state two versions of the result correspond-

ing to the parameterizations based on M.CD and A.CD.

Let ϕ denote a generic parametrization of either Σ

or Σ−1 for the p-variate tν distribution with the scale

matrix Σ, the contribution of a single observation to

the Fisher information block for the scale parameter

and the degrees of freedom are as follows:

Ii,j(ϕ) =
1

2(ν + p+ 2)

[
(ν + p)tr

(
Σ−1Σϕi

Σ−1Σϕj

)
−tr
(
Σ−1Σϕi

)
tr
(
Σ−1Σϕj

)]
=

1

2(ν + p+ 2)

[
(ν + p)tr

(
ΣΣ−1ϕi

ΣΣ−1ϕj

)
−tr
(
ΣΣ−1ϕi

)
tr
(
ΣΣ−1ϕj

)]
,

Ii(ϕ, ν) = − 1

(ν + p+ 2)(ν + p)
tr
(
Σ−1Σϕi

)
= − 1

(ν + p+ 2)(ν + p)
tr
(
ΣΣ−1ϕi

)
.

The equations involving Σϕ

(
i.e.

∂Σ

∂ϕ

)
are useful for

the A.CD model, while those involving Σ−1ϕ

(
i.e.

∂Σ−1

∂ϕ

)
can be used for modelling Σ−1. In the appli-

cation to model (4), ϕ> = (γ>,λ>)> is for parameter-

izing the scale matrix.

Once the information matrix is computed, the iter-

ative Fisher scoring algorithm can be used to compute

the MLE of the parameters by updating the current

value of θ̃ to θ̂:

θ̂ = θ̃ + I−1(θ̃)U(θ̃).

Note that when using linear link functions for d(·, ·),
and v(·, ·) in (4), simpler structures for the score func-

tion and the Fisher information will result. Also, when

ν → ∞, the results in this section reduce to those for

an iterative procedure for computing the MLEs of the

A.CD model parameters under the multivariate normal

setup.



Robust Estimation of the Correlation Matrix 5

Computation and the form of the entries of the

Fisher information matrix are slightly different for A.CD

and M.CD and are summarized in the following two

subsections.

3.2 Fisher Information Matrix for A.CD

As an immediate consequence of the results given in

subsection 3.1 we obtain the Fisher information blocks

for the parameters of the components of the scale ma-

trix and the degrees of freedom for the A.CD model.

I22,rs(γ) =
(ν + p)n

ν + p+ 2
tr(LγrL

>
γsT

>T ),

I33,rs(λ) =

[
tr
(
LL>Dλr

Σ−1Dλs
+D−2Dλr

Dλs

)
−2tr(D−1Dλr )tr(D−1Dλs)

(ν + p)

]
n(ν + p)

ν + p+ 2
,

I44(ν) =
n

4

[
ψ
(ν

2

)
− ψ

(ν + p

2

)
− 2p(ν + p+ 4)

ν(ν + p)(ν + p+ 2)

]
,

I23,rs(γ,λ) =
(ν + p)n

ν + p+ 2
tr(DLγrL

>Dλs
Σ−1),

I24,r(γ, ν) = 0,

I34,s(λ, ν) = − 2n

(ν + p+ 2)(ν + p)
tr(D−1Dλs

),

where ψ(x) = d2

dx2 logΓ (x) stands for the trigamma

function.

Letting ν → ∞ in the above identities, we obtain

the corresponding results for the multivariate normal

model where the log-likelihood function `(θ), up to an

additive constant is:

− 2

n
`(θ) = log |D2|+n−1

n∑
i=1

∆i =

p∑
t=1

log σ2
t +trSΣ−1.

The score function and the Fisher information for the

multivariate normal distribution is easy to obtain by

considering the following facts and substituting in the

previous results:

ωi → 1,
(ν + p)n

ν + p+ 2
→ n,

2n

ν + p+ 2
→ 0,

and
∑n
i=1 ωiSi = nS, where S = n−1

∑n
i=1 rir

>
i .

3.3 Comparison with the Fisher Information Matrix

for M.CD

In this section, we find the Fisher information matrix

for the M.CD and compare it with that for the A.CD

models. For simplicity, we use the same notation for

the information matrices corresponding to A.CD and

M.CD. Using the result given in subsection 3.1, the en-

tries of the Fisher information associated to the scale

parameter and the degrees of freedom for the M.CD

model are:

I22,rs(γ) =
(ν + p)n

ν + p+ 2
tr(T>γrD

−2TγsΣ),

I33,rs(λ) =
n

2(ν + p+ 2)

[
(ν + p)tr(D−4D2

λrD
2
λs)

−tr(D−2D2
λr

)tr(D−2D2
λs

)

]
,

I23,rs(γ,λ) = 0,

I24,r(γ, ν) = 0,

I34,s(λ, ν) = − n

(ν + p+ 2)(ν + p)
tr(D−2D2

λs
).

Comparing similar entries in the two sections, it is evi-

dent that their forms and values are quite different for

the A.CD and M.CD models even for general link func-

tions d(·, ·), v(·, ·). However, some notable and compu-

tationally useful differences are singled out below:

1. The parameters γ and λ are asymptotically orthog-

onal in the M.CD, but not in the A.CD. It is known

that for the multivariate normal distribution, the γ

and λ are asymptotically orthogonal in the M.CD

model (Ye & Pan 2006, Holan & Spinka 2007), but

not in the A.CD model (Pourahmadi 2007). Here we

have shown the same to be true for the multivariate

tν setup. Our finding is different from that in Lin

& Wang (2009), p. 3016. Under the M.CD and mul-

tivariate t-distribution, Lin & Wang (2009) showed

I23,rs(γ,λ) to be nonzero, and hence γ and λ are

not asymptotically orthogonal.

2. The parameters ν and γ are asymptotically orthog-

onal in both the A.CD and M.CD models, this is

not the case for ν and λ, the parameters of the in-

novation variance.

3. Since D = diag(σt) is a diagonal matrix, letting

log(σt) := z>t λ, the derivative of D with respect to

λs is Dλs = (ZD,s)D, where

ZD,s = diag(z1,s, . . . , zp,s), s = 1, . . . , q.

Thus, replacing the matrix D−1Dλs
by ZD,s us-

ing the above results will lead to simpler forms for

parts of the score function and the Fisher informa-

tion that involve λ. Also, using the log-linear models
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for the innovation standard deviation, both M.CD

and A.CD models will have the same quantity for

I34(λ, ν).

4. After implementing both models and exploring the

performance of the algorithms under different con-

ditions, on average we obtained less number of itera-

tions and faster convergence rate in the Fisher scor-

ing algorithm for the M.CD models over the A.CD

models in both normal and multivariate tν setup.

This could be due to the fact that we deal with the

covariance matrix in the A.CD and the precision

matrix in the M.CD models, and we know that in

the likelihood formulation and the Fisher scoring al-

gorithm the precision matrix is the quantity that is

involved directly, and that could lead to the faster

convergence rate of M.CD.

4 Data Analysis

In this section, we compare the robustness and capa-

bilities of the A.CD and M.CD for modeling various

correlation structures using simulated and real data.

We denote the M.CD and A.CD when used in conjunc-

tion with the multivariate normal and t distributions as

M.CD.N and A.CD.N, M.CD.T and A.CD.T, respec-

tively.

We compare estimators of correlation matrices using

the following two loss functions and their corresponding

risks:

∆1(R,G) = trR−1G− log |R−1G| − n,

and ∆2(R,G) = tr(R−1G− I)2,

where R is the target correlation matrix and G is an-

other positive-definite correlation matrix of the same

size. The loss∆1(R,G) is known as the entropy loss and

∆2(R,G) as the quadratic loss. Both of these loss func-

tions are 0, when G = R and positive, when G 6= R.

Their corresponding risk functions are:

Ri(R,G) = ER{∆i(R,G)}, i = 1, 2.

An estimator R̂ is better than R̃, if its associated risk

is smaller, that is, Ri(R, R̂) < Ri(R, R̃).

4.1 Simulation

We fix the true parameters (mean, covariance/correlation

matrix) for the simulation setup using those of the well-

known Kenward (1987)’s cattle data. Here the weight of

thirty cattle were recorded 11 times over a 133-day pe-

riod, the dataset has been analyzed by several authors

Zimmerman & Núñez Antón (2009). As in Pourahmadi

(1999), cubic polynomials were fitted to the Cholesky

factors T ,D of the sample covariance matrix of the

treatment A of the cattle data.

For simulating data, we construct two true 11× 11

covariance matrices corresponding to those of the cat-

tle data fitted with M.CD.N-Poly(3, 3) and A.CD.N-

Poly(3, 3) denoted byΣmcd andΣacd, respectively. Thus,

the true covariance (correlation) matrices are known

and correspond to the above fits.

We generated m = 100 datasets from a multivari-

ate t-distribution with the mean vector equal to the

sample mean of the cattle data and the scale matrix

equal to Σmcd and Σacd, respectively, and for the fol-

lowing combinations of (ν, n): “ν = 4, 50”(df) , “n =

25, 100”(sample sizes). We calculated the entropy and

quadratic risks after fitting M.CD.N, M.CD.T, A.CD.N

and A.CD.T using the Fisher scoring algorithm de-

scribed in Section 3. In each iteration, after updating

the estimates of the ν and the covariance structure,

we obtain the updated estimate of the mean param-

eters using the weighted least square. Note that here

we fit cubic polynomials both to the GARPs (GMAPs)

and the log-innovation variances, the same models as

their true counterparts. The results in Table 1(a) show

that the risks in the third and forth columns are much

smaller than those in the first two columns of both pan-

els. This indicates the improved performance of M.CD

over A.CD, when the data are actually generated from

the same M.CD covariance (correlation) structure. Fur-

thermore, in the left panel corresponding to ν = 4, a

smaller degrees of freedom, the risks for M.CD.T and

A.CD.T are much smaller than M.CD.N and A.CD.N,

and this difference disappears, as expected, for ν = 50.

Similar statements can be made about the results in Ta-

ble 1(b) where the data are generated using the A.CD

covariance structure, but now one can see that the first

two columns of the two panels are smaller than their

counterparts in the last two columns. In summary, the

simulation results reported in Table 1 show the impor-

tance of knowing the structure of the underlying covari-

ance matrix, where the M.CD works better for datasets

coming from M.CD structure, and the A.CD fits the

covariance matrix better if the data is coming from an

A.CD structure.

Next, the theoretical result in Chen & Dunson (2003)

and Section 2 suggest that the estimate of the correla-

tion matrix is robust to model misspecification of the

innovation variances when using the A.CD. To verify

this empirically, we rely on the same dataset used for

the simulations in Table 1, but for log-innovation vari-

ances we fit a linear structure rather than the true cubic

polynomial. The impact of this innovation variance mis-

specification on estimating the correlation matrix can
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Table 1 (a). Simulating data from Σmcd and fitting Poly(3, 3) (cubic fit for innovation variance). Values within parentheses
are empirical standard errors.

Simulating from Σmcd

ν = 4 ν = 50
Risk type A.CD.T A.CD.N M.CD.T M.CD.N A.CD.T A.CD.N M.CD.T M.CD.N

n=25 Entropy 0.8379 1.1563 0.4009 0.7870 0.9169 0.9334 0.5043 0.5144
(0.4901) (0.8780) (0.3581) (0.8900) (0.4661) (0.4563) (0.3958) (0.4043)

Quadratic 2.4038 3.5832 0.9126 1.9400 2.5983 2.6308 1.1184 1.1392
(2.0487) (3.9302) (1.2406) (2.8187) (1.7479) (1.7201) (1.1642) (1.1911)

n=100 Entropy 0.6206 0.7224 0.1215 0.2653 0.6555 0.6544 0.1118 0.1124
(0.1591) (0.2539) (0.0920) (0.2827) (0.1857) (0.1825) (0.1189) (0.1205)

Quadratic 1.7016 2.0171 0.2490 0.5677 1.8151 1.8118 0.2470 0.2480
(0.5412) (0.8908) (0.1976) (0.6303) (0.6137) (0.6037) (0.3166) (0.3227)

(b). Simulating data from Σacd and fitting Poly(3, 3) (cubic fit for innovation variance)

Simulating from Σacd

ν = 4 ν = 50
Risk type A.CD.T A.CD.N M.CD.T M.CD.N A.CD.T A.CD.N M.CD.T M.CD.N

n=25 Entropy 0.3460 0.7072 0.5866 0.9780 0.3583 0.3641 0.6337 0.6516
(0.3597) (0.9609) (0.3735) (0.9712) (0.2682) (0.2813) (0.3476) (0.3820)

Quadratic 0.8250 1.8045 1.0928 2.1981 0.7807 0.7846 1.0805 1.0848
(1.2135) (3.6170) (1.1615) (4.6778) (0.7516) (0.7764) (0.5850) (0.5876)

n=100 Entropy 0.0917 0.2681 0.3283 0.5041 0.0826 0.0849 0.3116 0.3152
(0.0747) (0.4659) (0.1573) (0.4378) (0.0807) (0.0830) (0.1597) (0.1597)

Quadratic 0.1813 0.6898 0.5320 0.9643 0.1694 0.1750 0.5146 0.5204
(0.1495) (2.1286) (0.2159) (1.7977) (0.1819) (0.1883) (0.2425) (0.2425)

be seen in Table 2. More precisely, we observe the fol-

lowings:

1. Comparing the first two A.CD columns of Table 1

with the first two columns of Tables 2 in both pan-

els, shows that the correlation estimation is robust

to the model misspecification for innovation vari-

ances. This conclusion seems to be independent of

the structure of the covariance matrix used for the

simulation (Σmcd or Σacd).

2. The last two M.CD columns of Table 1(a) (Sim-

ulation from Σmcd) have smaller risks compare to

the last two columns of Table 2(a) in both panels.

This confirms that the correlation estimation is not

robust to the model misspecification for innovation

variances in the M.CD structure.

Finally, we undertook a simulation study to examine

the performance and flexibility of the proposed A.CD.T

approach. The main objective is to study the robustness

or sensitivity to the true distribution. For example, it

is important to know when data are from a t distribu-

tion, how bad the M.CD or A.CD will perform when we

use the normal distribution to estimate the parameters,

and vice versa? For the sake of diversity, now the true

parameters are set to be those of the tumor data (dis-

cussed in subsection 4.2) analyzed next and fitted with

A.CD.T-Poly(3, 3), except that the df is specified at

two different settings. For the df ’s, we take a low value

(ν = 4) corresponding to heavy-tailed distributions and

a high value (ν = 50) corresponding to near normality.

The two sample sizes were from small (n = 25) to a

relatively large (n = 100). Simulations were run with

m = 500 replications for each combination of ν and n

and each simulated data set was fitted under A.CD.T

and A.CD.N scenarios. The detailed numerical results,

including the average ML estimates for the fixed effects,

the moving average parameters and the scale innovation

variances, the average of maximized log-likelihood val-

ues `max, the average of associated BIC values and the

median estimates for the df , together with their stan-

dard errors in parentheses, are summarized in Table

3. It shows that for smaller ν the point estimators of

the parameters under the A.CD.T and A.CD.N scenar-

ios are generally the same, but their SE’s differ with

the normal distributions leading to larger SE’s. Fur-

thermore, the estimated df has a downward bias for

the smaller sample size n = 25.

4.2 The tumor growth data

We apply our methodology to the in vivo growth of

lung tumor for the control group of 22 xenografted nude

mice, which has been also analyzed in Lin & Wang

(2009) using M.CD.T. Figure 1 shows the profile plot

of the logarithm of tumor growth volumes over an un-
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Table 2 (a). Simulating data from Σmcd and fitting Poly(3, 1) (linear fit for innovation variance). Values within parentheses
are empirical standard errors.

Simulating from Σmcd

ν = 4 ν = 50
Risk type A.CD.T A.CD.N M.CD.T M.CD.N A.CD.T A.CD.N M.CD.T M.CD.N

n=25 Entropy 0.8651 1.1367 0.7890 1.0247 0.9580 0.9846 0.8655 0.8867
(0.4200) (0.7285) (0.3993) (0.7108) (0.4393) (0.4437) (0.3905) (0.3985)

Quadratic 2.4347 3.3864 2.1492 2.9354 2.6603 2.7305 2.3016 2.3523
(1.7953) (3.1821) (1.5791) (2.9867) (1.6925) (1.7229) (1.4214) (1.4603)

n=100 Entropy 0.6523 0.7618 0.5892 0.6865 0.6739 0.6742 0.6072 0.6071
(0.1467) (0.2444) (0.1431) (0.2362) (0.1449) (0.1429) (0.1470) (0.1473)

Quadratic 1.7762 2.0849 1.5803 1.8342 1.8601 1.8593 1.6486 1.6466
(0.5336) (0.8488) (0.4979) (0.7583) (0.5209) (0.5124) (0.5060) (0.5064)

(b). Simulating data from Σacd and fitting Poly(3, 1) (linear fit for innovation variance)

Simulating from Σacd

ν = 4 ν = 50
Risk type A.CD.T A.CD.N M.CD.T M.CD.N A.CD.T A.CD.N M.CD.T M.CD.N

n=25 Entropy 0.3942 0.7456 0.4181 0.7617 0.4552 0.4665 0.4592 0.4712
(0.2791) (0.8003) (0.2773) (0.8229) (0.3258) (0.3577) (0.3159) (0.3406)

Quadratic 0.8791 1.8830 0.8315 1.8184 0.7768 0.7818 0.7841 0.7868
(0.4917) (2.4344) (0.5498) (2.6867) (0.5345) (0.5773) (0.5383) (0.5585)

n=100 Entropy 0.1289 0.3237 0.2158 0.4358 0.1276 0.1323 0.1995 0.2042
(0.1548) (0.8596) (0.1412) (0.8468) (0.1383) (0.1390) (0.1234) (0.1242)

Quadratic 0.2295 0.7257 0.3456 0.7676 0.2030 0.2102 0.3294 0.3364
(0.2135) (1.7008) (0.1913) (1.7750) (0.1978) (0.1982) (0.1780) (0.1778)

Table 3 Average estimates for γ,λ, `max and BIC and the median estimate for ν based on 500 replications. Values within
parentheses are empirical standard errors.

Param. True n=25 n=100
Param. ν = 4 ν = 50 ν = 4 ν = 50

A.CD.T A.CD.N A.CD.T A.CD.N A.CD.T A.CD.N A.CD.T A.CD.N
γ0 0.9318 0.9293 0.9261 0.9381 0.9373 0.9326 0.9288 0.9268 0.9268

(0.0085) (0.0115) (0.0081) (0.0081) (0.0040) (0.0060) (0.0037) (0.0038)
γ1 0.0962 0.1230 0.1442 0.1533 0.1538 0.1106 0.1220 0.0979 0.0988

(0.0200) (0.0275) (0.0183) (0.0183) (0.0091) (0.0141) (0.0086) (0.0086)
γ2 0.0898 0.1012 0.1119 0.1116 0.1101 0.0985 0.1020 0.0935 0.0942

(0.0100) (0.0127) (0.0095) (0.0095) (0.0047) (0.0072) (0.0045) (0.0045)
γ3 0.3041 0.3087 0.3095 0.3076 0.3063 0.3076 0.3053 0.3011 0.3015

(0.0054) (0.0074) (0.0052) (0.0052) (0.0027) (0.0043) (0.0025) (0.0025)
λ0 -1.6379 -1.6706 -1.7175 -1.7031 -1.6693 -1.6919 -1.6668 -1.6690 -1.6468

(0.0044) (0.0064) (0.0022) (0.0021) (0.0020) (0.0037) (0.0011) (0.0010)
λ1 -0.5685 -0.5801 -0.5989 -0.5844 -0.5821 -0.5760 -0.5799 -0.5721 -0.5725

(0.0071) (0.0099) (0.0068) (0.0069) (0.0033) (0.0050) (0.0033) (0.0033)
λ2 0.5416 0.5241 0.5121 0.5280 0.5264 0.5396 0.5307 0.5375 0.5376

(0.0058) (0.0075) (0.0055) (0.0055) (0.0026) (0.0045) (0.0026) (0.0027)
λ3 -0.2795 -0.2766 -0.2745 -0.2812 -0.2822 -0.2800 -0.2776 -0.2774 -0.2774

(0.0044) (0.0061) (0.0040) (0.0040) (0.0021) (0.0031) (0.0021) (0.0021)
ν 4.1040 . 34.5796 . 4.0612 . 49.7055 .

(0.2006) . (2.8122) . (0.0329) . (2.7051) .
`max 121.67 89.560 76.112 75.110 451.18 297.40 275.4831 273.40

(1.3179) (1.9102) (0.6318) (0.6385) (2.4676) (4.4406) (1.2285) (1.2430)
BIC -7.0301 -4.5897 -3.3851 -3.4337 -8.0566 -5.0270 -4.5426 -4.5470

(0.1054) (0.1528) (0.0505) (0.0511) (0.0494) (0.0888) (0.0246) (0.0249)
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Fig. 1 Profile plot of the tumor data (left panel), where the least square estimates of the saturated model for the mean function
is shown with dashed line. The plots of GMAPs (upper right panel) and log-innovation standard deviation (lower right panel).

equally spaced 28-day period for the 22 mice, together

with the sample regressograms of the generalized mov-

ing average parameters (GMAPs), and the sample inno-

vation standard deviations. It should be noted that our

analysis is based on the saturated model for the mean

function, where a separate parameter for the mean re-

sponse at each time has been considered (Pourahmadi

2000; Diggle et al. 2002, p. 65; Pan & MacKenzie 2003).

In fact, following the analysis of Lin & Wang (2009) and

using the design matrix for the mean response to be

Xi = [1 k], where 1 = (1, 1, ..., 1)> , k = (0, 1, 2.5, 3.5,

4.5, 6, 7, 8, 10, 11.5, 13, 14)>, the optimization procedure

using the Newton-Raphson algorithm for the A.CD.T

model will converge only to a local maximum which

depends noticeably on the choice of the initial values.

However, using the saturated mean model the algo-

rithm converges to the global maximum for both A.CD.T

and A.CD.N. We fit the tumor data using A.CD.N

and A.CD.T for various choices of the degrees of the

Poly(d, q) models. The values of `max, together with

the corresponding number of parameters and BIC val-

ues for selected pairs(d, q) are listed in Table 4. Judg-

ing from the BIC values, Poly(6, 5) is the best and also

Poly(3, 5) is relatively parsimonious and a competitive

choice for both A.CD.N and A.CD.T models. Table 5

shows the ML estimates and the associated standard

errors for the best two fitting A.CD.N and A.CD.T. It

is noteworthy that the estimates of the df for the two

fitted A.CD.T are somewhat small, suggesting that the

error distribution has a larger tail than the normal dis-

tribution, which confirms the finding of Lin & Wang

(2009). Finally note that, based on the different inter-

pretation of A.CD and M.CD parameters, the GMAPs

and GARPs are not comparable.

5 Conclusions

We have established the role of an alternative Cholesky

decomposition of the covariance matrix of a longitudi-

nal dataset in providing robust estimator of its corre-

lation matrix. Depending on the true structure of the

underlying covariance matrix, whether it is from M.CD

or A.CD models, the respective model will outperform

the other in obtaining an efficient estimator for the co-

variance structure. Robustness to outliers is handled

using heavy-tailed multivariate t-distributions with un-

known degrees of freedom. Simulations and a real data

example confirm the benefit of using the multivariate t-

distribution to obtain a relatively more robust estimate

of the parameters.

Newton-Raphson algorithm with Fisher scoring for

computing the maximum likelihood estimators of the

parameters of the alternative Cholesky decomposition

turns out to be more complicated than the standard
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Table 4 Comparison of `max, number of parameters, and BIC values for some Poly(d, q) choices of A.CD.N and A.CD.T
models.

Poly(d, q) # of param. `max BIC
A.CD.N A.CD.T A.CD.N A.CD.T A.CD.N A.CD.T

(1,1) 4 5 -26.94 -9.575 4.697 3.259
(1,2) 5 6 -14.64 -0.134 3.719 2.541
(1,3) 6 7 -14.21 1.661 3.821 2.519
(1,4) 7 8 -13.70 3.041 3.915 2.534
(1,5) 8 9 -10.17 5.541 3.734 2.447
(1,6) 9 10 -10.15 5.596 3.873 2.582
(2,1) 5 6 -24.36 -8.929 4.603 3.341
(2,2) 6 7 -14.17 1.244 3.817 2.556
(2,3) 7 8 -14.01 2.168 3.943 2.613
(2,4) 8 9 -13.48 3.577 4.036 2.625
(2,5) 9 10 -10.09 5.982 3.868 2.547
(2,6) 10 11 -10.07 6.021 4.007 2.684
(3,1) 6 7 -22.01 -7.462 4.530 3.348
(3,2) 7 8 -13.10 2.239 3.860 2.606
(3,3) 8 9 -11.68 5.364 3.872 2.463
(3,4) 9 10 -10.44 8.812 3.899 2.290
(3,5) 10 11 -7.911 10.42 3.810 2.284
(3,6) 11 12 -7.909 10.43 3.951 2.424
(4,1) 7 8 -22.01 -7.362 4.670 3.479
(4,2) 8 9 -13.06 2.428 3.998 2.730
(4,3) 9 10 -11.65 5.822 4.010 2.562
(4,4) 10 11 -10.00 8.928 4.000 2.420
(4,5) 11 12 -6.377 11.21 3.811 2.353
(4,6) 12 13 -6.328 11.23 3.947 2.492
(5,1) 8 9 -21.96 -7.316 4.807 3.616
(5,2) 9 10 -13.06 2.768 4.138 2.839
(5,3) 10 11 -11.62 6.695 4.147 2.623
(5,4) 11 12 -9.914 9.848 4.133 2.477
(5,5) 12 13 -4.365 13.98 3.769 2.241
(5,6) 13 14 -4.242 14.34 3.898 2.349
(6,4) 12 13 -7.730 12.34 4.075 2.391
(6,5) 13 14 -2.415 16.81 3.732 2.125
(6,6) 14 15 -2.247 16.84 3.857 2.263
(7,4) 13 14 -7.481 12.40 4.193 2.526
(7,5) 14 15 -2.297 16.81 3.862 2.266
(7,6) 15 16 -2.145 16.84 3.989 2.404

Table 5 Parameter estimates for the best two Poly(d, q) choices of A.CD.N and A.CD.T

Poly(6, 5) Poly(3, 5)
A.CD.N A.CD.T A.CD.N A.CD.T

MLE SE MLE SE MLE SE MLE SE
γ0 1.0026 0.1828 0.9755 0.1957 0.9393 0.1722 0.9292 0.1845
γ1 0.4299 0.4335 0.0853 0.4538 0.3374 0.4037 0.0841 0.4290
γ2 0.1969 0.2155 0.1426 0.2372 0.1463 0.2007 0.1666 0.2260
γ3 0.4648 0.1451 0.5574 0.1585 0.2430 0.1137 0.3917 0.1270
γ4 0.3352 0.1172 0.2655 0.1207 . . . .
γ5 0.1627 0.0922 0.1616 0.0926 . . . .
γ6 -0.1458 0.0679 -0.1693 0.0679 . . . .
λ0 -1.4098 0.0435 -1.7097 0.1003 -1.3890 0.0435 -1.6733 0.0981
λ1 -0.7341 0.1505 -0.5697 0.1597 -0.6866 0.1501 -0.5311 0.1584
λ2 0.5473 0.1204 0.6631 0.1271 0.5148 0.1244 0.6080 0.1308
λ3 -0.1595 0.0961 -0.2767 0.1001 -0.1500 0.1010 -0.2727 0.1049
λ4 -0.1174 0.0850 -0.2006 0.0849 -0.0436 0.0864 -0.1522 0.0870
λ5 -0.2492 0.0752 -0.2164 0.0731 -0.1348 0.0716 -0.1080 0.0711
ν . . 3.4490 1.1747 . . 3.6626 1.2688
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Cholesky decomposition. This computational complex-

ity is comparable to maximum likelihood estimation of

parameters of the moving average models from time se-

ries analysis.

We would like to point out that, although often use-

ful for restricting the influence of outliers, the use of the

multivariate t-distribution alone does not necessarily

guarantee robustness. Deriving robustness characteris-

tics such as breakdown points and influence functions

for the t-distribution-based approach is an open prob-

lem. On the other hand, the connection of variants of

the Cholesky decomposition with AR and MA models

as discussed in Section 1 of this paper suggests that var-

ious robust time series methods as reviewed in Chapter

8 of Maronna et al. (2006) could be extended for ro-

bust estimation of the correlation/covariance matrices.

Systematic development of such extensions is left for

future research.
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