4 research outputs found

    Sensitivity analysis of expensive black-box systems using metamodeling

    Get PDF
    Simulations are becoming ever more common as a tool for designing complex products. Sensitivity analysis techniques can be applied to these simulations to gain insight, or to reduce the complexity of the problem at hand. However, these simulators are often expensive to evaluate and sensitivity analysis typically requires a large amount of evaluations. Metamodeling has been successfully applied in the past to reduce the amount of required evaluations for design tasks such as optimization and design space exploration. In this paper, we propose a novel sensitivity analysis algorithm for variance and derivative based indices using sequential sampling and metamodeling. Several stopping criteria are proposed and investigated to keep the total number of evaluations minimal. The results show that both variance and derivative based techniques can be accurately computed with a minimal amount of evaluations using fast metamodels and FLOLA-Voronoi or density sequential sampling algorithms.Comment: proceedings of winter simulation conference 201

    Batch Bayesian active learning for feasible region identification by local penalization

    Get PDF
    Identifying all designs satisfying a set of constraints is an important part of the engineering design process. With physics-based simulation codes, evaluating the constraints becomes considerable expensive. Active learning can provide an elegant approach to efficiently characterize the feasible region, i.e., the set of feasible designs. Although active learning strategies have been proposed for this task, most of them are dealing with adding just one sample per iteration as opposed to selecting multiple samples per iteration, also known as batch active learning. While this is efficient with respect to the amount of information gained per iteration, it neglects available computation resources. We propose a batch Bayesian active learning technique for feasible region identification by assuming that the constraint function is Lipschitz continuous. In addition, we extend current state-of-the-art batch methods to also handle feasible region identification. Experiments show better performance of the proposed method than the extended batch methods

    Surrogate Modelling with Sequential Design for Expensive Simulation Applications

    Get PDF
    The computational demands of virtual experiments for modern product development processes can get out of control due to fine resolution and detail incorporation in simulation packages. These demands for appropriate approximation strategies and reliable selection of evaluations to keep the amount of required evaluations were limited, without compromising on quality and requirements specified upfront. Surrogate models provide an appealing data‐driven strategy to accomplish these goals for applications including design space exploration, optimization, visualization or sensitivity analysis. Extended with sequential design, satisfactory solutions can be identified quickly, greatly motivating the adoption of this technology into the design process
    corecore