1,437 research outputs found

    Efficient dynamical downscaling of general circulation models using continuous data assimilation

    Get PDF
    Continuous data assimilation (CDA) is successfully implemented for the first time for efficient dynamical downscaling of a global atmospheric reanalysis. A comparison of the performance of CDA with the standard grid and spectral nudging techniques for representing long- and short-scale features in the downscaled fields using the Weather Research and Forecast (WRF) model is further presented and analyzed. The WRF model is configured at 25km horizontal resolution and is driven by 250km initial and boundary conditions from NCEP/NCAR reanalysis fields. Downscaling experiments are performed over a one-month period in January, 2016. The similarity metric is used to evaluate the performance of the downscaling methods for large and small scales. Similarity results are compared for the outputs of the WRF model with different downscaling techniques, NCEP reanalysis, and Final Analysis. Both spectral nudging and CDA describe better the small-scale features compared to grid nudging. The choice of the wave number is critical in spectral nudging; increasing the number of retained frequencies generally produced better small-scale features, but only up to a certain threshold after which its solution gradually became closer to grid nudging. CDA maintains the balance of the large- and small-scale features similar to that of the best simulation achieved by the best spectral nudging configuration, without the need of a spectral decomposition. The different downscaled atmospheric variables, including rainfall distribution, with CDA is most consistent with the observations. The Brier skill score values further indicate that the added value of CDA is distributed over the entire model domain. The overall results clearly suggest that CDA provides an efficient new approach for dynamical downscaling by maintaining better balance between the global model and the downscaled fields

    Convergence Analysis of a Viscosity Parameter Recovery Algorithm for the 2D Navier-Stokes Equations

    Full text link
    In this paper, the convergence of an algorithm for recovering the unknown kinematic viscosity of a two-dimensional incompressible, viscous fluid is studied. The algorithm of interest is a recursive feedback control-based algorithm that leverages observations that are received continuously-in-time, then dynamically provides updated values of the viscosity at judicious moments. It is shown that in an idealized setup, convergence to the true value of the viscosity can indeed be achieved under a natural and practically verifiable non-degeneracy condition. This appears to be first such result of its kind for parameter estimation of nonlinear partial differential equations. Analysis for two parameter update rules is carried out: one which involves instantaneous evaluation in time and the other, averaging in time. The proofs of convergence for either rule exploits sensitivity-type bounds in higher-order Sobolev topologies, while the instantaneous version particularly requires delicate energy estimates involving the time-derivative of the sensitivity-type variable. Indeed, a crucial component in the analysis of the first update rule is the identification of a dissipative structure for the time-derivative of the sensitivity-type variable, which ultimately ensures a favorable dependence on the tuning parameter of the algorithm.Comment: 35 pages, results expanded to include alternative update formula, exposition adjusted accordingly, additional remarks included, to appear in Nonlinearit

    Optimal Nonlinear Eddy Viscosity in Galerkin Models of Turbulent Flows

    Full text link
    We propose a variational approach to identification of an optimal nonlinear eddy viscosity as a subscale turbulence representation for POD models. The ansatz for the eddy viscosity is given in terms of an arbitrary function of the resolved fluctuation energy. This function is found as a minimizer of a cost functional measuring the difference between the target data coming from a resolved direct or large-eddy simulation of the flow and its reconstruction based on the POD model. The optimization is performed with a data-assimilation approach generalizing the 4D-VAR method. POD models with optimal eddy viscosities are presented for a 2D incompressible mixing layer at Re=500Re=500 (based on the initial vorticity thickness and the velocity of the high-speed stream) and a 3D Ahmed body wake at Re=300,000Re=300,000 (based on the body height and the free-stream velocity). The variational optimization formulation elucidates a number of interesting physical insights concerning the eddy-viscosity ansatz used. The 20-dimensional model of the mixing-layer reveals a negative eddy-viscosity regime at low fluctuation levels which improves the transient times towards the attractor. The 100-dimensional wake model yields more accurate energy distributions as compared to the nonlinear modal eddy-viscosity benchmark {proposed recently} by \"Osth et al. (2014). Our methodology can be applied to construct quite arbitrary closure relations and, more generally, constitutive relations optimizing statistical properties of a broad class of reduced-order models.Comment: 41 pages, 16 figures; accepted for publication in Journal of Fluid Mechanic

    Accelerating and enabling convergence of nonlinear solvers for Navier-Stokes equations by continuous data assimilation

    Full text link
    This paper considers improving the Picard and Newton iterative solvers for the Navier-Stokes equations in the setting where data measurements or solution observations are available. We construct adapted iterations that use continuous data assimilation (CDA) style nudging to incorporate the known solution data into the solvers. For CDA-Picard, we prove the method has an improved convergence rate compared to usual Picard, and the rate improves as more measurement data is incorporated. We also prove that CDA-Picard is contractive for larger Reynolds numbers than usual Picard, and the more measurement data that is incorporated the larger the Reynolds number can be with CDA-Picard still being contractive. For CDA-Newton, we prove that the domain of convergence, with respect to both the initial guess and the Reynolds number, increases as as the amount of measurement data is increased. Additionally, for both methods we show that CDA can be implemented as direct enforcement of measurement data into the solution. Numerical results for common benchmark Navier-Stokes tests illustrate the theory
    • …
    corecore