26 research outputs found

    Semilinear elliptic equations in thin regions with terms concentrating on oscillatory boundaries

    Get PDF
    In this work we study the behavior of a family of solutions of a semilinear elliptic equation, with homogeneous Neumann boundary condition, posed in a two-dimensional oscillating thin region with reaction terms concentrated in a neighborhood of the oscillatory boundary. Our main result is concerned with the upper and lower semicontinuity of the set of solutions. We show that the solutions of our perturbed equation can be approximated with ones of a one-dimensional equation, which also captures the effects of all relevant physical processes that take place in the original problem

    A nonlinear elliptic problem with terms concentrating in the boundary

    Full text link
    In this paper we investigate the behavior of a family of steady state solutions of a nonlinear reaction diffusion equation when some reaction and potential terms are concentrated in a ϵ\epsilon-neighborhood of a portion Γ\Gamma of the boundary. We assume that this ϵ\epsilon-neighborhood shrinks to Γ\Gamma as the small parameter ϵ\epsilon goes to zero. Also, we suppose the upper boundary of this ϵ\epsilon-strip presents a highly oscillatory behavior. Our main goal here is to show that this family of solutions converges to the solutions of a limit problem, a nonlinear elliptic equation that captures the oscillatory behavior. Indeed, the reaction term and concentrating potential are transformed into a flux condition and a potential on Γ\Gamma, which depends on the oscillating neighborhood
    corecore