378 research outputs found

    Semidefinite programming converse bounds for classical communication over quantum channels

    Full text link
    © 2017 IEEE. We study the classical communication over quantum channels when assisted by no-signalling (NS) and PPT-preserving (PPT) codes. We first show that both the optimal success probability of a given transmission rate and one-shot-error capacity can be formalized as semidefinite programs (SDPs) when assisted by NS or NS∩PPT codes. Based on this, we derive SDP finite blocklength converse bounds for general quantum channels, which also reduce to the converse bound of Polyanskiy, Poor, and Verdii for classical channels. Furthermore, we derive an SDP strong converse bound for the classical capacity of a general quantum channel: for any code with a rate exceeding this bound, the optimal success probability vanishes exponentially fast as the number of channel uses increases. In particular, applying our efficiently computable bound, we derive improved upper bounds to the classical capacity of the amplitude damping channels and also establish the strong converse property for a new class of quantum channels

    Semidefinite programming converse bounds for quantum communication

    Full text link
    We derive several efficiently computable converse bounds for quantum communication over quantum channels in both the one-shot and asymptotic regime. First, we derive one-shot semidefinite programming (SDP) converse bounds on the amount of quantum information that can be transmitted over a single use of a quantum channel, which improve the previous bound from [Tomamichel/Berta/Renes, Nat. Commun. 7, 2016]. As applications, we study quantum communication over depolarizing channels and amplitude damping channels with finite resources. Second, we find an SDP strong converse bound for the quantum capacity of an arbitrary quantum channel, which means the fidelity of any sequence of codes with a rate exceeding this bound will vanish exponentially fast as the number of channel uses increases. Furthermore, we prove that the SDP strong converse bound improves the partial transposition bound introduced by Holevo and Werner. Third, we prove that this SDP strong converse bound is equal to the so-called max-Rains information, which is an analog to the Rains information introduced in [Tomamichel/Wilde/Winter, IEEE Trans. Inf. Theory 63:715, 2017]. Our SDP strong converse bound is weaker than the Rains information, but it is efficiently computable for general quantum channels.Comment: 17 pages, extended version of arXiv:1601.06888. v3 is closed to the published version, IEEE Transactions on Information Theory, 201

    A Minimax Converse for Quantum Channel Coding

    Full text link
    We prove a one-shot "minimax" converse bound for quantum channel coding assisted by positive partial transpose channels between sender and receiver. The bound is similar in spirit to the converse by Polyanskiy, Poor, and Verdu [IEEE Trans. Info. Theory 56, 2307-2359 (2010)] for classical channel coding, and also enjoys the saddle point property enabling the order of optimizations to be interchanged. Equivalently, the bound can be formulated as a semidefinite program satisfying strong duality. The convex nature of the bound implies channel symmetries can substantially simplify the optimization, enabling us to explicitly compute the finite blocklength behavior for several simple qubit channels. In particular, we find that finite blocklength converse statements for the classical erasure channel apply to the assisted quantum erasure channel, while bounds for the classical binary symmetric channel apply to both the assisted dephasing and depolarizing channels. This implies that these qubit channels inherit statements regarding the asymptotic limit of large blocklength, such as the strong converse or second-order converse rates, from their classical counterparts. Moreover, for the dephasing channel, the finite blocklength bounds are as tight as those for the classical binary symmetric channel, since coding for classical phase errors yields equivalently-performing unassisted quantum codes.Comment: merged with arXiv:1504.04617 version 1 ; see version

    Semidefinite programming strong converse bounds for classical capacity

    Full text link
    © 2017 IEEE. We investigate the classical communication over quantum channels when assisted by no-signaling and positive-partial-transpose-preserving (PPT) codes, for which both the optimal success probability of a given transmission rate and the one-shot -error capacity are formalized as semidefinite programs (SDPs). Based on this, we obtain improved SDP finite blocklength converse bounds of general quantum channels for entanglement-assisted codes and unassisted codes. Furthermore, we derive two SDP strong converse bounds for the classical capacity of general quantum channels: for any code with a rate exceeding either of the two bounds of the channel, the success probability vanishes exponentially fast as the number of channel uses increases. In particular, applying our efficiently computable bounds, we derive an improved upper bound on the classical capacity of the amplitude damping channel. We also establish the strong converse property for the classical and private capacities of a new class of quantum channels. We finally study the zero-error setting and provide efficiently computable upper bounds on the one-shot zero-error capacity of a general quantum channel

    Information-theoretic aspects of the generalized amplitude damping channel

    Get PDF
    The generalized amplitude damping channel (GADC) is one of the sources of noise in superconducting-circuit-based quantum computing. It can be viewed as the qubit analogue of the bosonic thermal channel, and it thus can be used to model lossy processes in the presence of background noise for low-temperature systems. In this work, we provide an information-theoretic study of the GADC. We first determine the parameter range for which the GADC is entanglement breaking and the range for which it is anti-degradable. We then establish several upper bounds on its classical, quantum, and private capacities. These bounds are based on data-processing inequalities and the uniform continuity of information-theoretic quantities, as well as other techniques. Our upper bounds on the quantum capacity of the GADC are tighter than the known upper bound reported recently in [Rosati et al., Nat. Commun. 9, 4339 (2018)] for the entire parameter range of the GADC, thus reducing the gap between the lower and upper bounds. We also establish upper bounds on the two-way assisted quantum and private capacities of the GADC. These bounds are based on the squashed entanglement, and they are established by constructing particular squashing channels. We compare these bounds with the max-Rains information bound, the mutual information bound, and another bound based on approximate covariance. For all capacities considered, we find that a large variety of techniques are useful in establishing bounds.Comment: 33 pages, 9 figures; close to the published versio

    Approximate Degradable Quantum Channels

    Full text link
    Degradable quantum channels are an important class of completely positive trace-preserving maps. Among other properties, they offer a single-letter formula for the quantum and the private classical capacity and are characterized by the fact that a complementary channel can be obtained from the channel by applying a degrading channel. In this work we introduce the concept of approximate degradable channels, which satisfy this condition up to some finite ε≥0\varepsilon\geq0. That is, there exists a degrading channel which upon composition with the channel is ε\varepsilon-close in the diamond norm to the complementary channel. We show that for any fixed channel the smallest such ε\varepsilon can be efficiently determined via a semidefinite program. Moreover, these approximate degradable channels also approximately inherit all other properties of degradable channels. As an application, we derive improved upper bounds to the quantum and private classical capacity for certain channels of interest in quantum communication.Comment: v3: minor changes, published version. v2: 21 pages, 2 figures, improved bounds on the capacity for approximate degradable channels based on [arXiv:1507.07775], an author adde
    • …
    corecore