3 research outputs found

    Semidefinite Programs for Randomness Extractors

    Get PDF
    Randomness extractors are an important building block for classical and quantum cryptography. However, for many applications it is crucial that the extractors are quantum-proof, i.e., that they work even in the presence of quantum adversaries. In general, quantum-proof extractors are poorly understood and we would like to argue that in the same way as Bell inequalities (multiprover games) and communication complexity, the setting of randomness extractors provides a operationally useful framework for studying the power and limitations of a quantum memory compared to a classical one. We start by recalling how to phrase the extractor property as a quadratic program with linear constraints. We then construct a semidefinite programming (SDP) relaxation for this program that is tight for some extractor constructions. Moreover, we show that this SDP relaxation is even sufficient to certify quantum-proof extractors. This gives a unifying approach to understand the stability properties of extractors against quantum adversaries. Finally, we analyze the limitations of this SDP relaxation

    Quantum-proof randomness extractors via operator space theory

    Get PDF
    Quantum-proof randomness extractors are an important building block for classical and quantum cryptography as well as device independent randomness amplification and expansion. Furthermore they are also a useful tool in quantum Shannon theory. It is known that some extractor constructions are quantum-proof whereas others are provably not [Gavinsky et al., STOC'07]. We argue that the theory of operator spaces offers a natural framework for studying to what extent extractors are secure against quantum adversaries: we first phrase the definition of extractors as a bounded norm condition between normed spaces, and then show that the presence of quantum adversaries corresponds to a completely bounded norm condition between operator spaces. From this we show that very high min-entropy extractors as well as extractors with small output are always (approximately) quantum-proof. We also study a generalization of extractors called randomness condensers. We phrase the definition of condensers as a bounded norm condition and the definition of quantum-proof condensers as a completely bounded norm condition. Seeing condensers as bipartite graphs, we then find that the bounded norm condition corresponds to an instance of a well studied combinatorial problem, called bipartite densest subgraph. Furthermore, using the characterization in terms of operator spaces, we can associate to any condenser a Bell inequality (two-player game) such that classical and quantum strategies are in one-to-one correspondence with classical and quantum attacks on the condenser. Hence, we get for every quantum-proof condenser (which includes in particular quantum-proof extractors) a Bell inequality that can not be violated by quantum mechanics.Comment: v3: 34 pages, published versio

    Quantum Bilinear Optimization

    Get PDF
    We study optimization programs given by a bilinear form over noncommutative variables subject to linear inequalities. Problems of this form include the entangled value of two-prover games, entanglement-assisted coding for classical channels, and quantum-proof randomness extractors. We introduce an asymptotically converging hierarchy of efficiently computable semidefinite programming (SDP) relaxations for this quantum optimization. This allows us to give upper bounds on the quantum advantage for all of these problems. Compared to previous work of Pironio, Navascués, and Acín [SIAM J. Optim., 20 (2010), pp. 2157-2180], our hierarchy has additional constraints. By means of examples, we illustrate the importance of these new constraints both in practice and for analytical properties. Moreover, this allows us to give a hierarchy of SDP outer approximations for the completely positive semidefinite cone introduced by Laurent and Piovesan
    corecore