22,516 research outputs found
A semidefinite program for distillable entanglement
We show that the maximum fidelity obtained by a p.p.t. distillation protocol
is given by the solution to a certain semidefinite program. This gives a number
of new lower and upper bounds on p.p.t. distillable entanglement (and thus new
upper bounds on 2-locally distillable entanglement). In the presence of
symmetry, the semidefinite program simplifies considerably, becoming a linear
program in the case of isotropic and Werner states. Using these techniques, we
determine the p.p.t. distillable entanglement of asymmetric Werner states and
``maximally correlated'' states. We conclude with a discussion of possible
applications of semidefinite programming to quantum codes and 1-local
distillation.Comment: 28 pages, LaTe
A Parallel Approximation Algorithm for Positive Semidefinite Programming
Positive semidefinite programs are an important subclass of semidefinite
programs in which all matrices involved in the specification of the problem are
positive semidefinite and all scalars involved are non-negative. We present a
parallel algorithm, which given an instance of a positive semidefinite program
of size N and an approximation factor eps > 0, runs in (parallel) time
poly(1/eps) \cdot polylog(N), using poly(N) processors, and outputs a value
which is within multiplicative factor of (1 + eps) to the optimal. Our result
generalizes analogous result of Luby and Nisan [1993] for positive linear
programs and our algorithm is inspired by their algorithm.Comment: 16 page
Conditions for Existence of Dual Certificates in Rank-One Semidefinite Problems
Several signal recovery tasks can be relaxed into semidefinite programs with
rank-one minimizers. A common technique for proving these programs succeed is
to construct a dual certificate. Unfortunately, dual certificates may not exist
under some formulations of semidefinite programs. In order to put problems into
a form where dual certificate arguments are possible, it is important to
develop conditions under which the certificates exist. In this paper, we
provide an example where dual certificates do not exist. We then present a
completeness condition under which they are guaranteed to exist. For programs
that do not satisfy the completeness condition, we present a completion process
which produces an equivalent program that does satisfy the condition. The
important message of this paper is that dual certificates may not exist for
semidefinite programs that involve orthogonal measurements with respect to
positive-semidefinite matrices. Such measurements can interact with the
positive-semidefinite constraint in a way that implies additional linear
measurements. If these additional measurements are not included in the problem
formulation, then dual certificates may fail to exist. As an illustration, we
present a semidefinite relaxation for the task of finding the sparsest element
in a subspace. One formulation of this program does not admit dual
certificates. The completion process produces an equivalent formulation which
does admit dual certificates
Super-resolution Line Spectrum Estimation with Block Priors
We address the problem of super-resolution line spectrum estimation of an
undersampled signal with block prior information. The component frequencies of
the signal are assumed to take arbitrary continuous values in known frequency
blocks. We formulate a general semidefinite program to recover these
continuous-valued frequencies using theories of positive trigonometric
polynomials. The proposed semidefinite program achieves super-resolution
frequency recovery by taking advantage of known structures of frequency blocks.
Numerical experiments show great performance enhancements using our method.Comment: 7 pages, double colum
On the Burer-Monteiro method for general semidefinite programs
Consider a semidefinite program (SDP) involving an positive
semidefinite matrix . The Burer-Monteiro method uses the substitution to obtain a nonconvex optimization problem in terms of an
matrix . Boumal et al. showed that this nonconvex method provably solves
equality-constrained SDPs with a generic cost matrix when , where is the number of constraints. In this note we extend
their result to arbitrary SDPs, possibly involving inequalities or multiple
semidefinite constraints. We derive similar guarantees for a fixed cost matrix
and generic constraints. We illustrate applications to matrix sensing and
integer quadratic minimization.Comment: 10 page
A Class of Semidefinite Programs with rank-one solutions
We show that a class of semidefinite programs (SDP) admits a solution that is
a positive semidefinite matrix of rank at most , where is the rank of
the matrix involved in the objective function of the SDP. The optimization
problems of this class are semidefinite packing problems, which are the SDP
analogs to vector packing problems. Of particular interest is the case in which
our result guarantees the existence of a solution of rank one: we show that the
computation of this solution actually reduces to a Second Order Cone Program
(SOCP). We point out an application in statistics, in the optimal design of
experiments.Comment: 16 page
Generalized Entropies
We study an entropy measure for quantum systems that generalizes the von
Neumann entropy as well as its classical counterpart, the Gibbs or Shannon
entropy. The entropy measure is based on hypothesis testing and has an elegant
formulation as a semidefinite program, a type of convex optimization. After
establishing a few basic properties, we prove upper and lower bounds in terms
of the smooth entropies, a family of entropy measures that is used to
characterize a wide range of operational quantities. From the formulation as a
semidefinite program, we also prove a result on decomposition of hypothesis
tests, which leads to a chain rule for the entropy.Comment: 21 page
- …