22,516 research outputs found

    A semidefinite program for distillable entanglement

    Get PDF
    We show that the maximum fidelity obtained by a p.p.t. distillation protocol is given by the solution to a certain semidefinite program. This gives a number of new lower and upper bounds on p.p.t. distillable entanglement (and thus new upper bounds on 2-locally distillable entanglement). In the presence of symmetry, the semidefinite program simplifies considerably, becoming a linear program in the case of isotropic and Werner states. Using these techniques, we determine the p.p.t. distillable entanglement of asymmetric Werner states and ``maximally correlated'' states. We conclude with a discussion of possible applications of semidefinite programming to quantum codes and 1-local distillation.Comment: 28 pages, LaTe

    A Parallel Approximation Algorithm for Positive Semidefinite Programming

    Full text link
    Positive semidefinite programs are an important subclass of semidefinite programs in which all matrices involved in the specification of the problem are positive semidefinite and all scalars involved are non-negative. We present a parallel algorithm, which given an instance of a positive semidefinite program of size N and an approximation factor eps > 0, runs in (parallel) time poly(1/eps) \cdot polylog(N), using poly(N) processors, and outputs a value which is within multiplicative factor of (1 + eps) to the optimal. Our result generalizes analogous result of Luby and Nisan [1993] for positive linear programs and our algorithm is inspired by their algorithm.Comment: 16 page

    Conditions for Existence of Dual Certificates in Rank-One Semidefinite Problems

    Full text link
    Several signal recovery tasks can be relaxed into semidefinite programs with rank-one minimizers. A common technique for proving these programs succeed is to construct a dual certificate. Unfortunately, dual certificates may not exist under some formulations of semidefinite programs. In order to put problems into a form where dual certificate arguments are possible, it is important to develop conditions under which the certificates exist. In this paper, we provide an example where dual certificates do not exist. We then present a completeness condition under which they are guaranteed to exist. For programs that do not satisfy the completeness condition, we present a completion process which produces an equivalent program that does satisfy the condition. The important message of this paper is that dual certificates may not exist for semidefinite programs that involve orthogonal measurements with respect to positive-semidefinite matrices. Such measurements can interact with the positive-semidefinite constraint in a way that implies additional linear measurements. If these additional measurements are not included in the problem formulation, then dual certificates may fail to exist. As an illustration, we present a semidefinite relaxation for the task of finding the sparsest element in a subspace. One formulation of this program does not admit dual certificates. The completion process produces an equivalent formulation which does admit dual certificates

    Super-resolution Line Spectrum Estimation with Block Priors

    Full text link
    We address the problem of super-resolution line spectrum estimation of an undersampled signal with block prior information. The component frequencies of the signal are assumed to take arbitrary continuous values in known frequency blocks. We formulate a general semidefinite program to recover these continuous-valued frequencies using theories of positive trigonometric polynomials. The proposed semidefinite program achieves super-resolution frequency recovery by taking advantage of known structures of frequency blocks. Numerical experiments show great performance enhancements using our method.Comment: 7 pages, double colum

    On the Burer-Monteiro method for general semidefinite programs

    Full text link
    Consider a semidefinite program (SDP) involving an n×nn\times n positive semidefinite matrix XX. The Burer-Monteiro method uses the substitution X=YYTX=Y Y^T to obtain a nonconvex optimization problem in terms of an n×pn\times p matrix YY. Boumal et al. showed that this nonconvex method provably solves equality-constrained SDPs with a generic cost matrix when p2mp \gtrsim \sqrt{2m}, where mm is the number of constraints. In this note we extend their result to arbitrary SDPs, possibly involving inequalities or multiple semidefinite constraints. We derive similar guarantees for a fixed cost matrix and generic constraints. We illustrate applications to matrix sensing and integer quadratic minimization.Comment: 10 page

    A Class of Semidefinite Programs with rank-one solutions

    Get PDF
    We show that a class of semidefinite programs (SDP) admits a solution that is a positive semidefinite matrix of rank at most rr, where rr is the rank of the matrix involved in the objective function of the SDP. The optimization problems of this class are semidefinite packing problems, which are the SDP analogs to vector packing problems. Of particular interest is the case in which our result guarantees the existence of a solution of rank one: we show that the computation of this solution actually reduces to a Second Order Cone Program (SOCP). We point out an application in statistics, in the optimal design of experiments.Comment: 16 page

    Generalized Entropies

    Full text link
    We study an entropy measure for quantum systems that generalizes the von Neumann entropy as well as its classical counterpart, the Gibbs or Shannon entropy. The entropy measure is based on hypothesis testing and has an elegant formulation as a semidefinite program, a type of convex optimization. After establishing a few basic properties, we prove upper and lower bounds in terms of the smooth entropies, a family of entropy measures that is used to characterize a wide range of operational quantities. From the formulation as a semidefinite program, we also prove a result on decomposition of hypothesis tests, which leads to a chain rule for the entropy.Comment: 21 page
    corecore