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We show that a class of semidefinite programs (SDP) admits a solu-

tion that is a positive semidefinite matrix of rank at most r, where

r is the rank of the matrix involved in the objective function of the

SDP. The optimization problems of this class are semidefinite pack-

ing problems,which are the SDP analogs to vector packing problems.

Of particular interest is the case in which our result guarantees the

existence of a solution of rank one: we show that the computation

of this solution actually reduces to a Second Order Cone Program

(SOCP). We point out an application in statistics, in the optimal

design of experiments.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we study semidefinite packing problems. The latter, which are the semidefinite pro-

gramming (SDP) analogs to the packing problems in linear programming, can be written as:

max 〈C, X〉, (P)

s.t. 〈Mi, X〉 � bi, i ∈ [l],
X � 0,

where C � 0, and Mi � 0, i ∈ [l]. The notation X � 0 indicates that X belongs to the set S
+
n of

n× n symmetric positive semidefinite matrices. Similarly, X � 0 stands for X ∈ S
++
n , the set of n× n

symmetric positive definite matrices. The space of n × n symmetric matrices Sn is equipped with the
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inner product 〈A, B〉 = trace(ATB). We also make use of the standard notation [l] := {1, . . . , l}, and
we use boldface letters to denote vectors. We denote the nullspace (resp. the range) of a matrix A by

Ker A (resp. Im A).

Semidefinitepackingproblemswere introducedby Iyengar et al. [9]. They showed that these arise in

many applications such as relaxations of combinatorial optimization problems or maximum variance

unfolding, andgaveanalgorithmtocomputeapproximate solutions,which is faster than thecommonly

used interior point methods.

Our main result is that when the matrix C is of rank r, Problem (P) has a solution that is of rank at

most r (Theorem 2). In particular, when r = 1, the optimal SDP variable X can be factorized as xxT ,

and we show that finding x reduces to a Second Order Cone Program (SOCP) which is computationally

more tractable than the initial SDP. We present this result and some applications in Section 2. Then,

we extend our result to a wider class of semidefinite programs (Theorems 5 and 6), in which not all

the constraints are of packing type. The proofs of the results of Section 2.1 are given in Section 4.

Theorems 5 and 6 are proved in Appendix.

1.1. Related work

Solutions of small rank of semidefinite programs have been extensively studied over the past years.

Barvinok [2] and Pataki [13] discovered independently that any SDP with l constraints has a solution

X∗ whose rank is at most

r∗ =
⌊√

8l + 1 − 1

2

⌋
,

where 	·
 denotes the integer part. This was one of the motivations of Burer and Monteiro for devel-

oping the SDPLR solver [5], which searches a solution of the SDP in the form X = RRT , where R is

a n × r∗ matrix. The resulting problem is non-convex, and so the augmented Lagrangian algorithm

proposed in [5] is not guaranteed to converge to a global optimum. However, it performs remarkably

well in practice, and some conditions which ensure that the returned solution is an optimum of the

SDP are provided in [6]. Our result shows that for a semidefinite packing problem in which the matrix

C has rank r, one can force the matrix R to be of size n × r (rather than n × r∗), which can lead to

considerable gains in computation time when r is small.

We point out that the ratio between the optimal value of Problem (P) and the value of its best

solution of rank one has been studied by Nemirovski et al. [12]. They show that the value v∗ of the SDP

and the value v∗
1 of its best rank-one solution satisfy:

v∗ � v∗
1 � 1

2 ln(2lμ)
v∗, where μ = min

(
l,max

i∈[l] rank Mi

)
. (1)

This ratio can be considerably reduced in particular configurations, but to the best of our knowledge,

the fact that the gap in (1) vanishes when the matrix C in the objective function is of rank 1 is new,

except in the particular case in which every Mi is of rank 1, too [16].

2. Main result and consequences

In this section, we state the main result of this article and point out an application to statistics. We

also discuss the significance of our result for combinatorial optimization problems (the hypothesis

on the rank of the matrix C appears to be very restrictive). The results of this section are proved in

Section 4.

2.1. The main result

We start with an algebraic characterization of the semidefinite packing problems that are feasible

and bounded.
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Theorem 1. Problem (P) is feasible if and only if every bi is nonnegative. Moreover if Problem (P) is feasible,

then this problem is bounded if and only if the range of C is included in the range of
∑

i Mi.

The reader should note that the range inclusion condition in Theorem 1 is in fact equivalent to the

feasibility of the Lagrangian dual of Problem (P):

min
μ�0

μTb, (D)

s.t.
∑
i

μiMi � C.

The main result of this article follows:

Theorem 2. We assume that the conditions of Theorem 1 are fulfilled, so that Problem (P) is feasible and

bounded. If rank C = r, then the semidefinite packing problem (P) has a solution which is a matrix of rank

at most r.

A consequence of Theorem2 is thatwhen thematrix in the objective function is of rank 1 (C = ccT ),
the computation of a solution X of Problem (P) reduces to the computation of a vector x such that

X = xxT . The next result shows that this can be done very efficiently by a Second Order Cone Program

(SOCP).

Corollary 3. We assume that the conditions of Theorem 1 are fulfilled, and that C = ccT for a vector

c ∈ R
n (i.e. rank C = 1). Then, Problem (P) reduces to the SOCP:

max
x∈Rn

cTx, (2)

s.t. ‖Aix‖2 �
√

bi, i = 1 ∈ [l],
where the matrices Ai are such that Mi = AT

i Ai. Moreover, if x is any optimal solution of Problem (2), then

X = xxT is an optimal solution of Problem (P), and the optimal value of (P) is (cTx)2.

Proof. The SOCP (2) is simply obtained from (P) by substituting xxT from X and AT
i Ai from Mi. The

objective function 〈C, X〉 becomes (cTx)2, and we can remove the square by noticing that cTx � 0

without loss of generality, since if x is optimal, so is −x. �

In fact, the proof of Theorem 2 relies on the projection of Problem (P) on an appropriate subspace,

which lets the reduced semidefinite packing problembe strictly feasible, aswell as its dual. This reduc-

tion is not only of theoretical interest, since in some cases it may yield some important computational

savings. Therefore, we next state this result as a proposition.

Let I0 := {i ∈ [l] : bi = 0} and I := [l]\I0. Let the columns of the n × n0 matrix U form an

orthonormal basis of Im(
∑

i∈[l] Mi), and the columns of the n0×n′ matrixV form an orthonormal basis

of Ker(UT ∑
i∈I0 MiU). We further define C′ := (UV)TC(UV) ∈ S

+
n′ and M′

i := (UV)TMi(UV) ∈ S
+
n′

(for i ∈ I), and we consider the reduced problem

max
Z∈S

+
n′

〈C′, Z〉, (P′)

s.t. 〈M′
i , Z〉 � bi, i ∈ I.

Proposition 4. We assume that the conditions of Theorem 1 are fulfilled, so that Problem (P) is feasible

and bounded. Then, the following properties hold:

(i) Problem (P′) is strictly feasible, i.e. ∃Z � 0 : ∀ i ∈ I, 〈M′
i , Z〉 < bi.

(ii) The Lagrangian dual of (P′) is strictly feasible, i.e. ∃μ > 0 : ∑
i∈I μiM

′
i � C′.
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(iii) If Z is a solution of Problem (P′), then X := (UV)Z(UV)T is an optimal solution of Problem(P) (which

of course satisfies rank X � rank Z and 〈C, X〉 = 〈C′, Z〉).
The present work grew out from an application to networks [4], in which the traffic between any

two pairs of nodes must be inferred from a set of measurements. This can be modeled by the theory

of optimal experimental design, which leads to a large SDP. Standard solvers relying on interior points

methods, like SeDuMi [20], cannot handle problems of this size. However, in a followup work relying

on the present reduction to an SOCP [19], we solve within seconds the same instances in SeDuMi. We

next present this application.

2.2. Application to the optimal design of experiments

An interesting application arises in statistics, in the design of optimal experiments (formore details

on the subject, the reader is referred to Pukelsheim [15]). An experimenter wishes to estimate the

quantity cTθ , where θ is an unknown n-dimensional parameter, and c is a vector of n coefficients.

To this end, she disposes of l available experiments, each one giving a linear measurement of the

parameter yi = Aiθ , up to a (centered)measurement noise. If the amount of experimental effort spent

on the ith experiment iswi, it is known that the variance of the best linear unbiased estimator for cTθ
is cT (

∑
i wiMi)

†c, whereMi = AT
i Ai, andM† denotes the Moore–Penrose inverse ofM. The problem of

distributing the experimental effort so as to minimize this variance is called the “c-optimal problem”,

and can be formulated as:

min
w�0

cT

⎛
⎝∑

i

wiMi

⎞
⎠†

c, (3)

s.t.

l∑
i=1

wi = 1.

It is classical to reformulate this problem as a semidefinite program, by using the Schur complement

lemma and duality theory (see e.g. [16,18]). The c-optimal SDP already appeared in Pukelsheim and

Titterington [14], hidden under a more general form:

max cTXc, (4)

s.t. 〈Mi, X〉 � 1, i ∈ [l],
X � 0.

In this problem, the design variablew is proportional to the dual variable associated to the constraints

〈Mi, X〉 � 1.Note that this is a semidefinitepackingproblem, inwhich thematrixdefining theobjective

function has rank 1 (C = ccT ).More generally, if wewant to estimate simultaneously r linear functions

of the parameter ζ =
(
cT1 θ , . . . , cTr θ

)
, the best unbiased estimator ζ̂ is now an r-dimensional vector

with covariance matrix

Covw(ζ̂ ) := KT

⎛
⎝ l∑

k=1

wkMk

⎞
⎠†

K,

where K = [c1, . . . , cr]. Several criteria can be used for this experimental design problem. Popular

ones are the A-criterion and the E-criterion, which aim at minimizing respectively the trace and the

largest eigenvalue of Covw(ζ̂ ). These optimization problems can also be formulated as semidefinite

packing problems. For A-optimality, this packing formulation is given in [18]:

max c̃TX c̃, (5)

s.t. 〈M̃i, X〉 � 1, i ∈ [l],
X � 0,
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where c̃ =
[
cT1 , . . . , cTr

]T
, and M̃i is a block-diagonal matrix which contains r times the blockMi on its

main diagonal. The matrix in the objective function is of rank 1 (C = c̃c̃T ), and so Problem (5) reduces

to a SOCP byCorollary 3. This reduction is of great interest for the computation of optimal experimental

designs, because SOCP solvers are much more efficient than SDP solvers, and take advantage of the

sparsity of the matrices Ai (whereas the matrices Mi = AT
i Ai used in the original SDP formulation (5)

are not very sparse in general).

The E-optimal design SDP is presented in [22] (for the special case inwhichC = I), and takes exactly

the formof the semidefinite packing problem (P),with bi = 1 for all i ∈ [l] and C = KKT = ∑r
i=1 cici

T .

Here, thematrix C has rank r, and so Theorem 2 indicates that the E-optimal design SDP has a solution

which is a matrix of rank at most r. This suggests the use of specialized low rank solvers for this

SDP when r is small (cf. Section 1.1 at the end of the introduction), which can lead to a considerable

improvement in terms of computation time.

2.3. Relation with combinatorial optimization

SDP relaxations of combinatorial optimization problems havemotivated the authors of [9] to study

semidefinite packing problems. Hence, we discuss the significance of our result for this class of prob-

lems in this section.

Semidefinite programs have been used extensively to formulate relaxations of NP-hard combina-

torial optimization problems after the work of Goemans and Williamson on the approximability of

MAXCUT [8]. These SDP relaxations often lead to optimal solutions of the related combinatorial opti-

mization problems whenever the solution of the SDP is of small rank. As shown by Iyengar et al. [9],

SDP relaxations of many combinatorial optimization problems can be cast as semidefinite packing

programs. Our result therefore identifies a subclass of combinatorial optimization problemswhich are

solvable in polynomial time. Unfortunately, this promising statement only helped us to identify trivial

instances so far. For example, the MAXCUT semidefinite packing problem [9] yields an exact solution

of the combinatorial problemwhenever it has a rank 1 solution. Thematrix C in the objective function

of this SDP is the Laplacian of the graph, and so it is known that

rank C = N − κ,

where N is the number of vertices and κ is the number of connected components in the graph. Our

result therefore states that if a graph of N vertices has N − 1 connected components, then it defines a

MAXCUT instance that is solvable inpolynomial time. Suchgraphsactually consist inapairof connected

vertices, plus N − 2 isolated vertices, and the related MAXCUT instance is trivial.

Another limitation for the application of our theorem in this field is that most semidefinite packing

problems arising in combinatorial optimization (including but not limited to the Lovász ϑ function

SDP [11] and the related Szegedy number SDP [21], the vector coloring SDP [10], the sparsest cut

SDP [1] and the sparse principal components analysis SDP [7]) can be written in the form of (P), with

an additional trace equality constraint trace (X) = 1. In fact, we can show that if such an “equality

constrained” problem is strictly feasible, then it is equivalent to the following “classical” semidefinite

packing problem:

max 〈C + λI, X〉 − λ (6)

s.t. 〈Mi, X〉 � bi, i ∈ [l],
trace X � 1,

X � 0,

where λ is any scalar larger than |λ∗|, where λ∗ is the optimal Lagrange multiplier associated to the

constraint trace (X) = 1 (we omit the proof of this statementwhich is of secondary importance in this

article). Since C + λI is a full rank matrix, our result does not seem to yield any valuable information

for this class of problems.
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3. Extension to “combined” problems

The proof of our main result also applies to a wider class of semidefinite programs, which can be

written as:

sup
X,Y,λ

〈C, X〉 + 〈R0, Y〉 + h0
Tλ, (PCMB)

s.t. 〈Mi, X〉 � bi + 〈Ri, Y〉 + hi
Tλ, i ∈ [l],

X ∈ S
+
n , Y ∈ S

+
p , λ ∈ R

q,

where every matrix Mi and C are positive semidefinite, while the Ri are arbitrary symmetric ma-

trices. The vectors hi are in R
q. We denote by H the q × l matrix formed by the columns h1, . . . , hl .

The Lagrangian dual of Problem (PCMB) is:

inf
μ�0

bTμ, (DCMB)

s.t.

l∑
i=1

μiMi � C,

R0 +
l∑

i=1

μiRi � 0.

h0 + Hμ = 0.

Wehave seen in Section 2.1 that the feasibility of both the primal (P) and the dual (D) is sufficient to

guarantee that Problem (P) has a solution of rank atmost r := rank C. For combined problems however,

the feasibility of the couple of programs (PCMB)–(DCMB) is not sufficient to guarantee the existence of

a solution (X, Y, λ) of Problem (PCMB) in which rank X � r. We give indeed an example (Example 1)

where the optimum in Problem (PCMB) is not even attained. However, we show in the next theorem

that an asymptotic result subsists. Moreover, we shall see in Theorem 6 that a solution in which X is

of rank at most r exists as soon as an additional condition holds (strict dual feasibility). The proof of

Theorem 6 essentially mimics that of Theorem 2 and is therefore presented in Appendix A. Theorem 5

turns out to be a consequence of Theorem 6 and is proved in Appendix B.

Theorem 5. We assume that Problems (PCMB) and (DCMB) are feasible. If rank C = r, then there exists a

sequence of feasible primal variables (Xk, Yk, λk)k∈N such that rank Xk � r for all k ∈ N and 〈C, Xk〉 +
〈R0, Yk〉 + h0

Tλk converges to the optimum of Problem (PCMB) as k → ∞.

Theorem 6. We assume that Problem (PCMB) is feasible, and a refined Slater condition holds for Prob-

lem (DCMB), i.e. there is a feasible dual variable which strictly satisfies the non-affine constraints:

∃μ � 0 : ∑
i

μiMi � C, R0 + ∑
i

μiRi ≺ 0, h0 + Hμ = 0.

If rank C = r, then Problem (PCMB) has a solution (X, Y, λ) in which rank X � r. Moreover, if C �= 0, then

every solution (X, Y, λ) of Problem (PCMB) is such that rank X � n − r + r, where r := mini∈[l] rank Mi.

Example 1. Consider the following combined semidefinite packing problem:

sup
X∈S

+
2 , λ∈R2

3

100

〈⎛⎝ 81 9

9 1

⎞
⎠ , X

〉
− λ1 − 3λ2, (7)

s.t. 0 � 1 + λ1,

X1,1 � 1 + λ2,

X2,2 � 1 + 3λ1 + λ2.
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This problem is in the form of (PCMB) indeed, with C = ccT , c =
√

3
10

[ 9 1]T , h0 = [ –1 –3]T ,

M1 = 0, M2 =
⎛
⎝ 1 0

0 0

⎞
⎠ , M3 =

⎛
⎝ 0 0

0 1

⎞
⎠ and H =

⎛
⎝ 1 0 3

0 1 1

⎞
⎠ .

Problem (7) is clearly feasible (e.g. for X = 0,λ = 0), and the reader can verify thatμ = 1
10

[ 1 27 3]T
is dual feasible (in fact, this is the only dual feasible vector, and hence the dual problemdoes not satisfy

the Slater constraints qualification). The value of the optimum is 31
10
, and can be approached arbitrarily

closely for the sequence of feasible variables (xkx
T
k , λk)k∈N, where for all k � 0, xk = [√

3 + k
√

k]T ,
λk = [ –1 k + 2]T , while this optimum is not attained by any couple (X, λ) of (bounded) feasible

variables.

As in the previous section, we have a result of reduction to a SOCP, which holds when C is of rank

1, every Ri = 0 and h0 = 0. Recall that H denotes the matrix formed by the columns h1, . . . , hl .

Corollary 7. Consider the following “combined” semidefinite packing problem:

sup
X∈Sn, λ∈Rq

〈C, X〉, (8)

s.t. 〈Mi, X〉 � hi
Tλ + bi, i ∈ [l],

X � 0.

Assume that C = ccT has rank 1. If Problem (8) and its Lagrangian dual are feasible, i.e.

(i) ∃λ ∈ R
q : HTλ + b � 0;

(ii) ∃μ � 0 : ∑
i μiMi � C, h0 + Hμ = 0,

then, Problem (8) is bounded, and its optimal value is the square of the optimal value of the following SOCP:

sup
x∈Rn, λ∈Rq

cTx, (9)

s.t.

∥∥∥∥∥∥
⎡
⎣ 2Aix

hi
Tλ + bi − 1

⎤
⎦
∥∥∥∥∥∥
2

� hi
Tλ + bi + 1, i ∈ [l],

where the matrices Ai are such that Mi = AT
i Ai. Moreover, if (x, λ) is a solution of Problem (9), then

(xxT , λ) is a solution of Problem (8), and the optimal value of (8) is (cTx)2.

Proof. Theorem 5 guarantees the existence of a sequence of feasible variables (Xk, λk)k∈N in which

Xk has rank 1, i.e. Xk = xkxk
T , and 〈C, Xk〉 = (cTxk)

2 converges to the optimum of Problem (8). This

optimal value is therefore equal to the supremum of (cTx)2, over all the pairs of vectors (x, λ) ∈
R

n × R
q such that (xxT , λ) is feasible for Problem (8). As in the proof of Corollary 3, we notice that

if (xxT , λ) is feasible for Problem (8), so is ((−x)(−x)T , λ), hence we can remove the square in the

objective function.

The SOCP (9) is simply obtained from (8) by substituting xxT from X and AT
i Ai from Mi. We also

used the fact that for any vector z and for any scalar α, the hyperbolic constraint

‖z‖2
2 � α

is equivalent to the second order cone constraint∥∥∥∥∥∥
⎡
⎣ 2z

α − 1

⎤
⎦
∥∥∥∥∥∥
2

� α + 1. �
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3.1. Application: c-optimal design of experiments with multiple resource constraints

In a more general setting than the classical c-optimal design problem (3) presented in the previous

section, w no longer represents the percentage of experimental effort to spend on each experiment,

but describes some resource allocation to the available experiments, that is subject to multiple linear

constraints Pw � d, where P is a q × l matrix with nonnegative entries and d is a q × 1 vector. This

problem arises for example in a network-wide optimal sampling problem [19], where w is the vector

of the sampling rates of the monitoring devices on all links of the network, and is subject to linear

constraints that limit the overhead of the routers. We next show that this problem is a “combined”

semidefinite packing problem which reduces to an SOCP. The resource constrained c-optimal design

problem reads as follows:

inf
w�0

cT

⎛
⎝∑

i

wiMi

⎞
⎠†

c, (10)

s.t. Pw � d.

We assume that the optimal design problem is feasible, i.e. there exists a vector ŵ � 0 such that

Pŵ � d and c is in the range of
∑

i ŵiMi. Note that we can assume without loss of generality that

ŵ > 0. Otherwise, this wouldmean that the constraints Pw � d, w � 0 force the equalitywi = 0 to

hold for some coordinate i ∈ [l], and in this case we could simply remove the experiment i from the

set of available experiments.

We can now express the latter problem as an SDP thanks to the Schur complement lemma:

inf
t∈R, w�0

t (11)

s.t.

⎛
⎝ ∑

i wiMi c

cT t

⎞
⎠ � 0.

Pw � d.

Since the optimal t is positive (we exclude the trivial case c = 0), the latter matrix inequality may be

rewritten as

∑
i

wiMi � ccT

t
,

by using the Schur complement lemma again. Finally, we make the change of variables μ = tw and

Problem (11) is equivalent to

inf
μ�0,t�0

t (12)

s.t.

l∑
i=1

μiMi � ccT

Pμ � td.

This problem is exactly in the form of Problem (DCMB), for C = ccT ,μl+1 = t, b = [0, . . . , 0, 1]T ∈
R

l+1, Ml+1 = 0, h0 = 0, H = [P, −d], and for all i ∈ 0, . . . , l + 1, Ri = 0 (we also need to

introduce a nonnegative slack variable to handle the inequalities as equalities).

Letλ := cT (
∑

i Mi)
†cT , so thatλ

∑
i Mi � ccT .We set t = maxi∈[l](λ/ŵi) (t iswell defined because

ŵ > 0). The vector μ := tŵ is dual feasible, because Pμ � td, and
∑l

i=1 μiMi � λ
∑l

i=1 Mi � ccT .
In addition, the corresponding primal problem is clearly feasible (for λ = 0, since b � 0), and thus

we can use Corollary 7: the c-optimal design problem with resource constraints (10) reduces to the

SOCP (9). We give below this SOCP (with the parameters b, Mi, H and the slacks defined as above), as

well as its dual:
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sup
x∈R

n

λ∈R
q

cTx∥∥∥∥∥∥
⎡
⎣ 2Aix

pi
Tλ − 1

⎤
⎦
∥∥∥∥∥∥
2

� pi
Tλ + 1 (∀ i ∈ [l]),

dTλ � 1,

λ � 0.

inf
μ�0,t�0

α�0,(zi)i∈[l]

l∑
i=1

αi + t,

l∑
i=1

AT
i zi = c,

Pμ � td,∥∥∥∥∥∥
⎡
⎣ zi

αi − μi

⎤
⎦
∥∥∥∥∥∥
2

� αi + μi

(∀ i ∈ [l]),
where the vectors p1, . . . , pl ∈ R

q are the columns of the matrix P, and for all i ∈ [l], Ai is such

that AT
i Ai = Mi. The dual problem satisfies the (refined) Slater condition, because c ∈ Im(

∑
i Mi) =∑

i Im(AT
i ), so that ∃z1, . . . , zl : ∑l

i=1 A
T
i zi = c, Pμ � td and for α > 0 large enough, the non-affine

cone constraints are satisfied with a strict inequality. Hence, strong duality holds and the values of

these two problems are equal. By construction, the optimal design variable w is related to the dual

optimal variables μ and t by the relation w = t−1μ. Moreover, Corollary 7 shows that the optimal

value of Problem (10) is the square of the optimal value of these SOCPs.

4. Proofs of the theorems

Proof of Theorem 1. The fact that Problem (P) is feasible if and only if every bi is nonnegative is clear,

since X = 0 is always feasible in this case and Mi � 0, X � 0, implies 〈Mi, X〉 � 0.

Now, we assume that each bi is nonnegative, and we show that Problem (P) is bounded if and

only if Im C ⊂ Im
∑

i Mi. The positive semidefiniteness of the matrices Mi implies that there exists

matrices Ai (i ∈ [l]) such that AT
i Ai = Mi, and [AT

1, . . . , A
T
l ][AT

1, . . . , A
T
l ]T = ∑

i Mi. We also consider

a decomposition C = ∑r
k=1 ckck

T . For any factorizationM = ATA of a positive semidefinite matrixM,

it is known that ImM = Im A, and so the following equivalence relations hold:

Im C ⊂ Im
∑
i

Mi ⇐⇒ ∀ k ∈ [r], ck ∈ Im

⎛
⎝∑

i

Mi

⎞
⎠ = Im

([
AT
1, . . . , A

T
l

])

⇐⇒ ∀ k ∈ [r], ck ∈
⎛
⎝ l⋂

i=1

Ker(Ai)

⎞
⎠⊥

. (13)

We first assume that the range inclusion condition does not hold. Relation (13) shows that

∃k ∈ [r], ∃h ∈ R
n : ∀ i ∈ [l], Aih = 0, ck

Th �= 0.

Now, notice that X = αhhT is feasible for all α > 0, since α〈AT
i Ai, hh

T 〉 = 0 � bi. This contradicts the

fact that Problem (P) is bounded, because 〈C, X〉 � α(ck
Th)2, and α can be chosen arbitrarily large.

Conversely, if the range inclusion holds, we consider the Lagrangian dual (D) of Problem (P): the

range inclusion condition indicates that this problem is feasible, because it implies the existence of a

scalarλ > 0 such thatλ
∑

i Mi � C (we point out that a convenient value forλ is
∑r

k=1 ck
T (

∑
i Mi)

†ck;

this can be seen with the help of the Schur complement lemma). This means that Problem (D) has a

finite optimal value OPT � λ
∑

i bi, and by weak duality, Problem (P) is bounded (its optimal value

cannot exceed OPT). �

Before proving Theorem 2, we need to show that we can project Problem (P) on a subspace such

that the projected problem (P′) and its Lagrangian dual are strictly feasible (Proposition 4).
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Proof of Proposition 4. Let I0, I,U and V be defined as in the paragraph preceding the statement of

the proposition. Note that every matrixMi can be decomposed asMi = UM̃iU
T for a given matrix M̃i,

because its range is included in the range of
∑

i Mi (we have M̃i = UTMiU). The same observation holds

forC,whichcanbedecomposedasC = UC̃UT (wehaveassumedthe range inclusion Im C ⊂ Im
∑

i Mi).

Hence, Problem (P) is equivalent to:

max
X�0

〈C̃,UTXU〉,
s.t. 〈M̃i,U

TXU〉 � bi, i ∈ [l].
After the change of variable Z0 = UTXU (Z0 is a positive semidefinite matrix if X is), we obtain a

reduced semidefinite packing problem

max
Z0�0

〈C̃, Z0〉, (14)

s.t. 〈M̃i, Z0〉 � bi, i ∈ [l].
By construction, if Z0 is a solution of (14), then X := UZ0U

T is a solution of (P). Note that the projected

matrices in the constraints now satisfy
∑

i M̃i = UT (
∑

i Mi)U � 0.

We shall now consider a second projection, in order to get rid of the constraints in which bi = 0.

Note that each constraint indexed by i ∈ I0 is equivalent to imposing that Z0 belongs to the nullspace

of thematrix M̃i. Since the columns of V form a basis of∩i∈I0 Ker M̃i, any semidefinitematrix Z0 which

is feasible for Problem (14) must be of the form VZVT for some positive semidefinite matrix Z. Hence,

Problem (14) reduces to:

max
Z�0

〈VT C̃V, Z〉, (15)

s.t. 〈VTM̃iV, Z〉 � bi, i ∈ I.

which is nothing but Problem (P′), because VTM̃iV = VTUTMiUV = M′
i and VT C̃V = C′. By construc-

tion, If Z is a solution of (15)≡(P′), then VZVT is a solution of (14), and (UV)Z(UV)T is a solution of the

original problem (P). This proves the point (iii) of the proposition.

Wehave pointed out above that
∑

i M̃i � 0. Therefore, there exists a realλ > 0 such thatλ
∑

i M̃i �
C̃, and λ

∑
i M

′
i = VT

(
λ
∑

i M̃i

)
V � VT C̃V = C′. This proves the strict dual feasibility of Problem (P′)

(point (ii) of the proposition). Finally, since every bi is positive for i ∈ I , it is clear that the matrix

Z = εI � 0 is strictly feasible for Problem (P′) as soon as ε > 0 is sufficiently small. This establishes

the point (i), and the proposition is proved. �

We can now prove the main result of this article. We will first show that the result holds when

everyMi is positive definite, thanks to the complementary slackness relation. Then, the general result

is obtained by continuity. We point out at the end of this section the sketch of an alternative proof of

Theorem 2 for the case in which r = 1, based on the bidual of Problem (P) and Schur complements,

that shows directly that Problem (P) reduces to the SOCP (2).

Proof of Theorem 2. We will show that the result of the theorem holds for any semidefinite packing

problem which is strictly feasible, and whose dual is strictly feasible. Then, by Proposition 4, we can

say that Problem (P′) has a solution Z of rank atmost r′ := rank C′, and X := (UV)TZ(UV) is a solution
of the original problem which is of rank at most r′ � r.

So let us assume without loss of generality that (P) and (D) are strictly feasible:

∀ i ∈ [l], bi > 0 and ∃λ > 0 : λ
∑
i

Mi � C.

The Slater condition is fulfilled for this pair of programs, and so strong duality holds (the optimal value

of (P) equals the optimal value of (D), and the dual problem attains its optimum). In addition, the

strict dual feasibility implies that (P) also attains its optimum. The pairs of primal and dual solutions
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(X∗, μ∗) are characterized by the Karush–Kuhn–Tucker (KKT) conditions:

Primal feasibility: ∀ i ∈ [l], 〈Mi, X
∗〉 � bi;

X∗ � 0;
Dual feasibility: μ∗ � 0,

l∑
i=1

μ∗
i Mi � C;

Complementary slackness:

⎛
⎝ l∑

i=1

μ∗
i Mi − C

⎞
⎠ X∗ = 0,

∀ i ∈ [l], μ∗
i

(
bi − 〈Mi, X

∗〉) = 0.

Now, we consider the case in whichMi � 0 for all i, and we choose an arbitrary pair of primal and

dual optimal solutions (X∗, μ∗). The dual feasibility relation implies μ∗ �= 0, and so
∑

i μ
∗
i Mi is a

positive definite matrix (we exclude the trivial case C = 0). Since C is of rank r, we deduce that

rank

⎛
⎝∑

i

μ∗
i Mi − C

⎞
⎠ � n − r.

Finally, the complementary slackness relation indicates that the columns of X∗ belong to the nullspace

of (
∑

i μ
∗
i Mi − C), which is a vector space of dimension at most n − (n − r) = r, and so we conclude

that rank X∗ � r.

Wenowturn to the studyof thegeneral case inwhichMi � 0. To this end,weconsider theperturbed

problems

max 〈C, X〉,
s.t. 〈Mi + εI, X〉 � bi, (Pε)

X � 0

and

min
μ�0

l∑
i=1

μibi, (Dε)

s.t.

l∑
i=1

μi(Mi + εI) � C,

where ε � 0. Note that the strict feasibility of the unperturbed problems (P) and (D) implies that

of (Pε) and (Dε) on a neighborhood ε ∈ [0, ε0], ε0 > 0. We denote by (Xε, με) a pair of primal and

dual solutions of (Pε)–(Dε).

If ε > 0, Mi + εI � 0 and it follows from the previous discussion that Xε is of rank at most r.

We show below that we can choose the optimal variables (Xε, με)ε∈]0,ε0] within a bounded region,

so that we can construct a converging subsequence (Xεk , μεk )k∈N, εk → 0 from these variables. To

conclude, we will see that the limit (X0, μ0) satisfies the KKT conditions for Problems (P)–(D), and

that X0 is of rank at most r.

Let us denote the optimal value of Problems (Pε)–(Dε) by OPT(ε). Since the constraints of the

primal problem becomes tighter when ε grows, it is clear that OPT(ε) is nonincreasing with respect

to ε, so that

∀ ε ∈ [0, ε0], OPT(ε0) � OPT(ε) � OPT(0).

We have:

λ

⎛
⎝∑

i

Mi + εI

⎞
⎠ − C � λ

⎛
⎝∑

i

Mi

⎞
⎠ − C,
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and so we can write〈
λ
∑
i

Mi − C, Xε

〉
�

〈
λ
∑
i

(Mi + εI) − C, Xε

〉

= λ

〈∑
i

(Mi + εI) , Xε

〉
− OPT(ε)

� λ
∑
i

bi − OPT(ε0),

where the equality comes from the expression of OPT(ε) and the latter inequality follows from the

constraints of the Problem (Pε). The matrix λ
∑

i Mi − C is positive definite by assumption and its

smallest eigenvalue λ′ is therefore positive. Hence,

λ′ trace Xε �
〈
λ
∑
i

Mi − C, Xε

〉
� μTb − OPT(ε) � λ

∑
i

bi − OPT(ε0).

This shows that the positive semidefinite matrix Xε has its trace bounded, and therefore all its entries

are bounded.

It remains to show that the dual optimal variable με � 0 is bounded. This is simply done by

writing:

∀ i ∈ [l], biμ
ε
i � bTμε = OPT(ε) � OPT(0).

By assumption, bi > 0, and the entries of the vector με � 0 are bounded.

We can therefore construct a sequence of pairs of primal and dual optimal solutions (Xε, μεk )k∈N

that converges, with εk −→
k→∞ 0, εk > 0. The limit X0 of this sequence is of rank at most r, because the

rank is a lower semicontinuous function and rank Xεk � r for all k ∈ N. It remains to show that X0 is

a solution of Problem (P). The ε-perturbed KKT conditions must hold for all k ∈ N, and so they hold

for the pair (X0, μ
0) by taking the limit (the limit of any sequence of positive semidefinite matrices is

a positive semidefinite matrix because S
+
n is closed). This concludes the proof. �

4.1. Sketch of an alternative proof of Theorem 2 when r = 1

By Proposition 4, we only need to show that the result holds for the reduced problem (P′), and
so we assume without loss of generality that strong duality holds for all the optimization problems

considered below.

When r = 1, there is a vector c such that C = ccT and the dual problem of (P) takes the form:

min
μ�0

μTb, (16)

s.t. ccT � ∑
i

μiMi.

Now, setting t = μTb, and w = μ
t
, so that the new variable w satisfies wTb = 1, the constraint

of the previous problem becomes cct

t
� ∑

i wiMi. This matrix inequality, together with the fact that

the optimal t is positive, can be reformulated thanks to the Schur complement lemma, and (16) is

equivalent to:

min
t∈R,w�0

t, (17)

s.t.

⎛
⎝ ∑

i wiMi c

cT t

⎞
⎠ � 0,

wTb = 1.
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We dualize this SDP once again to obtain the bidual of Program (P) (strong duality holds):

max
β∈R,Z∈S

+
n+1

− β − 2vT c, (18)

s.t. 〈W,Mi〉 � βbi, i ∈ [l]

Z =
⎛
⎝ W v

vT 1

⎞
⎠ � 0.

We notice that the last matrix inequality is equivalent to W � vvT , using a Schur complement. Since

Mi � 0, we can assume thatW = vvT without loss of generality, and (18) becomes:

max
β∈R,v∈Rn

− β − 2vT c, (19)

s.t. ‖Aiv‖2 � βbi, i = 1 ∈ [l],
where Ai is a matrix such that AT

i Ai = Mi.

We now define the new variables α = √
β and x = v

α
, so that (19) becomes:

max
x∈Rn

(
max

α
−α2 − 2αxT c

)
, (20)

s.t. ‖Aix‖ �
√

bi, i = 1 ∈ [l].
The reader can finally verify that the value of themaxwithin parenthesis is (cTx)2, andwehave proved
that the SDP (P) reduces to the SOCP (2). By the way, this guarantees that the SDP (P) has a rank-one
solution. �
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A. Proof of Theorem 6

Before we give the proof of Theorem 6, we need one additional technical lemma, which shows that one can

assume without loss of generality that the primal problem is strictly feasible, and that the vector space spanned

by the vectors h0, h1, . . . , hl coincides with the cone generated by the same vectors. One can consider this lemma

as the analog of Proposition 4 for combined problems.

Lemma 8. We assume that the conditions of Theorem 6 are fulfilled. Then, there exists a subset I ⊂ [l], as well as

matrices C′ � 0 and M′
i � 0 (i ∈ I), so that the reduced “combined” semidefinite packing problem

max
Z�0, Y�0, λ

〈C′, Z〉 + 〈R0, Y〉 + h0
Tλ s.t. ∀ i ∈ I, 〈M′

i , Z〉 � bi + 〈Ri, Y〉 + hi
Tλ

has the same optimal value as (PCMB) and satisfies the following properties:

(i) ∃(Z′ � 0, Y ′ � 0,λ′) : ∀ i ∈ I, 〈Mi, Z
′〉 < bi + 〈Ri, Y ′〉 + hi

Tλ′ .
(ii) The cone K generated by the vectors (hi)i∈{0}∪I is a vector space.

(iii) rank C′ � rank C.
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(iv) There is a matrix U with orthonormal columns such that if (Z, Y,λ) is a solution of the reduced problem, then

(X := UZUT , Y,λ) is a solution of Problem (PCMB) (which of course satisfies rank X � rank Z).

Proof. In this lemma, (i) and (ii) are the properties that we will need to prove Theorem 6. Properties (iii)

and (iv) ensure that if the theorem holds for the reduced problem, then the result also holds for the initial

problem (PCMB). We handle separately the cases in which the initial problem does not satisfy the property (i)

or (ii). If both cases arise simultaneously, we obtain the result of this lemma by applying successively the following

two reductions.

Let (X∗, Y∗,λ∗) be an optimal solution of Problem (PCMB); the existence of a solution is guaranteed by the

(refined) Slater condition satisfied by the dual problem indeed (see e.g. [17,3]). We denote by I0 ⊂ [l] the subset

of indices for which bi + 〈Ri, Y∗〉 + hi
Tλ∗ = 0 (note that we have bi + 〈Ri, Y∗〉 + hi

Tλ∗ � 0 for all i because

Mi � 0 implies 〈Mi, X
∗〉 � 0). We define I := [l]\I0. In Problem (PCMB), we can replace the constraint 〈Mi, X〉 �

bi + 〈Ri, Y〉 + hi
Tλ by 〈Mi, X〉 = 0 for all i ∈ I0 , since (X∗, Y∗,λ∗) satisfies this stronger set of constraints. For a

feasible positive semidefinite matrix X , this implies 〈∑i∈I0 Mi, X〉 = 0, and even
∑

i∈I0 MiX = 0. Therefore, X is of

the form UZUT for some positive semidefinite matrix Z , where the columns of U form an orthonormal basis of the

nullspace ofM0 := ∑
i∈I0 Mi (U is obtained by taking the eigenvectors corresponding to the vanishing eigenvalues

of M0). Hence, Problem (PCMB) is equivalent to:

max 〈UTCU, Z〉 + 〈R0, Y〉 + h0
Tλ, (A.1)

s.t. 〈UTMiU, Z〉 � bi + 〈Ri, Y〉 + hi
Tλ, i ∈ I,

Z � 0, Y � 0.

We have thus reduced the problem to one for which bi +〈Ri, Y∗〉+hi
Tλ∗ > 0 for all i, and strict feasibility follows

(i.e. property (i) holds, consider λ′ = λ∗, Y ′ = Y∗ + η1I, and Z′ = η2I for sufficiently small reals η1 > 0 and

η2 > 0). Moreover, the projected matrix C′ := UTCU in the objective function has a smaller rank than C (i.e.

(iii) holds). Finally, (iv) holds for the reduced problem by construction: if (Z, Y,λ) is a solution of Problem (A.1),

then (X := UZUT , Y,λ) is a solution of Problem (PCMB), both problems have the same optimal value, and of course

rank X � rank Z .

We nowhandle the second case, inwhich Property (ii) does not hold for Problem (PCMB). The set K = { [h0,H]v,
v ∈ R

l+1, v � 0} is a closed convex cone. Hence, it is known that it can be decomposed as K = L + Q , where L is

a vector space and Q ⊂ L⊥ is a closed convex pointed cone (L = K ∩ (−K) is the lineality space of K). The interior

of the dual cone Q∗ is therefore nonempty, i.e. ∃λ : ∀ q ∈ Q\{0},λTq > 0. Let λ0 be the orthogonal projection of

λ on L⊥, so that λ0
Tq = λTq > 0 for all q ∈ Q\{0}, and λ0

Tx = 0 for all x ∈ L. Now, we define the set of indices

I = {i ∈ [l] : hi ∈ L}, and its complement I0 = [l]\I . For all i ∈ I0, hi = xi + qi for a vector xi ∈ L and a vector

qi ∈ Q\{0}, so that λ0
Thi = λ0

Txi + λ0
Tqi = λ0

Tqi > 0. For the indices i ∈ I , it is clear that λ0
Thi = 0. Finally,

since h0 + Hμ = 0, we have −h0 ∈ K , so that h0 ∈ L and h0
Tλ = 0. To sum up, we have proved the existence of

a vector λ0 for which

∀ i ∈ {0} ∪ I, λ0
Thi = 0 and ∀ i ∈ I0,λ0

Thi > 0.

Let (X∗, Y∗,λ∗) be an optimal solution of Problem (PCMB). For all positive real t, (X
∗, Y∗,λ∗ + tλ0) is also a solution,

because it is feasible and has the same objective value. Letting t → ∞, we see that the constraints of the problem

that are indexed by i ∈ I0 may be removed without changing the optimum. We have thus reduced the problem to

one for which (ii) holds. �

We can now prove Theorem 6. The proof mimics that of Theorem 2, i.e. we first show that the result holds

when each Mi is positive definite, and the general result is obtained by continuity. The only difference is how we

show that we can choose optimal variables (Xε, Yε,λε,με)ε∈]0,ε0] for a perturbed problem within a bounded

region.

Proof of Theorem 6. By Lemma 8, we may assume without loss of generality that K = cone{h0, . . . , hl} ⊃ −K

and that the primal problem is strictly feasible. The strict feasibility of the primal problem ensures that strong

duality holds, i.e. the optimal value of (PCMB) equals the optimal value of (DCMB), and the optimum is attained

in the dual problem. Moreover, the (refined) Slater constraints qualification for the dual problem guarantees the

existence of primal optimal variables as well (see e.g. Theorem 28.2 in [17]). The pairs of primal and dual solutions
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(
(X∗, Y∗,λ∗),μ∗) are characterized by the Karush–Kuhn–Tucker (KKT) conditions:

Primal feasibility: ∀ i ∈ [l], 〈Mi, X
∗〉 � bi + 〈Ri, Y∗〉 + hi

Tλ∗,

X∗ � 0, Y∗ � 0;

Dual feasibility: μ∗ � 0,
l∑

i=1

μ∗
i Mi � C, R0 +

l∑
i=1

μ∗
i Ri � 0, h0 + Hμ∗ = 0;

Complementary slackness:

⎛
⎝ l∑

i=1

μ∗
i Mi − C

⎞
⎠ X∗ = 0,

⎛
⎝R0 +

l∑
i=1

μ∗
i Ri

⎞
⎠ Y∗ = 0,

∀ i ∈ [l], μ∗
i (bi + 〈Ri, Y∗〉 + hi

Tλ∗ − 〈Mi, X
∗〉) = 0.

Now, we consider the case in which Mi � 0 for all i, and we choose an arbitrary pair of primal and dual optimal

solutions
(
(X∗, Y∗,λ∗),μ∗). The dual feasibility relation implies μ∗ �= 0, and so

∑
i μ

∗
i Mi is a positive definite

matrix (we exclude the trivial case C = 0). Since C is of rank r, we deduce that

rank

⎛
⎝∑

i

μ∗
i Mi − C

⎞
⎠ � n − r.

Finally, the complementary slackness relation indicates that the columns of X∗ belong to the nullspace of

(
∑

i μ
∗
i Mi −C), which is a vector space of dimension atmost n−(n− r) = r, and sowe conclude that rank X∗ � r.

Wenow turn to the study of the general case in whichMi � 0. To this end, we consider the perturbed problems

max 〈C, X〉 + 〈R0, Y〉 + h0
Tλ,

s.t. 〈Mi + εI, X〉 � bi + 〈Ri, Y〉 + hi
Tλ i ∈ [l], (Pε

CMB
)

X � 0, Y � 0

and

min
μ�0

l∑
i=1

μibi,

s.t.

l∑
i=1

μi(Mi + εI) � C, (Dε
CMB

)

R0 +
l∑

i=1

μiRi � 0,

h0 + Hμ = 0,

where ε � 0. Note that the refined Slater constraints qualification for the unperturbed problems (PCMB) and (DCMB)

(i.e. simultaneous feasibility (resp. strict feasibility) of all the affine constraints (resp. non-affine constraints))

implies the qualification of the constraints for (Pε
CMB

) and (Dε
CMB

) on a neighborhood ε ∈ [0, ε0], ε0 > 0. We

denote by
(
(Xε, Yε,λε),με

)
a pair of primal and dual solutions of (Pε

CMB
)–(Dε

CMB
). If ε > 0, Mi + εI � 0 and it

follows from the previous discussion that Xε is of rank at most r. We show below that we can choose the optimal

variables (Xε, Yε,λε,με)ε∈]0,ε0] within a bounded region, so that we can construct a converging subsequence

(Xεk , Yεk ,λεk ,μεk )k∈N, εk → 0 from these variables. To conclude, we will see that the limit (X0, Y0,λ0,μ0)

satisfies the KKT conditions for Problems (PCMB)–(DCMB), and that X0 is of rank at most r.

Let us denote the optimal value of Problems (Pε
CMB

)–(Dε
CMB

) byOPT(ε). Since the constraints of theprimal problem

becomes tighter when ε grows, it is clear that OPT(ε) is nonincreasing with respect to ε, so that

∀ ε ∈ [0, ε0], OPT(ε0) � OPT(ε) � OPT(0).
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Now let ε ∈]0, ε0]. By assumption, there exists a vector μ � 0 such that∑
i

μi(Mi + εI) � ∑
i

μiMi � C, and R0 + ∑
i

μiR0 ≺ 0. (A.2)

Therefore, we have

OPT(ε) = 〈C, Xε〉 + 〈R0, Yε〉 + h0
Tλε � 〈∑

i

μi (Mi + εI) , Xε 〉 + 〈R0, Yε〉 + h0
Tλε

�
∑
i

μi

(
bi + 〈Ri, Yε〉 + hi

Tλε
)

+ 〈R0, Yε〉 + h0
Tλε

= μTb + 〈∑
i

μiRi + R0, Y
ε〉 + (h0 + Hμ)T︸ ︷︷ ︸

=0

λε,

where the first inequality follows from (A.2), and the second one from the feasibility condition 〈Mi + εI, Xε〉 �
bi + 〈Ri, Yε〉 + hi

Tλε . The assumption (A.2) moreover implies that −(
∑

i μiRi + R0) is positive definite, so that its

smallest eigenvalue λ′ is positive, and

λ′ trace Yε �
〈
−

⎛
⎝∑

i

μiRi + R0

⎞
⎠ , Yε

〉
� μTb − OPT(ε) � μTb − OPT(ε0).

This shows that the trace of Yε is bounded, and so Yε � 0 is bounded.

Similarly, to bound Xε , we write:〈∑
i

μiMi − C, Xε

〉
�

〈∑
i

μi (Mi + εI) − C, Xε

〉

=
〈∑

i

μi (Mi + εI) , Xε

〉
− OPT(ε) + 〈R0, Yε〉 + h0

Tλε

�
∑
i

μi

(
bi + 〈Ri, Yε〉 + hi

Tλε) − OPT(ε) + 〈R0, Yε〉 + h0
Tλε

= μTb − OPT(ε) +
〈∑

i

μiRi + R0, Y
ε

〉
︸ ︷︷ ︸

�0

+ (h0 + Hμ)T︸ ︷︷ ︸
=0

λε,

where the first equality comes from the expression of OPT(ε). The matrix
∑

i μiMi − C is positive definite and its

smallest eigenvalue λ′′ is therefore positive. Hence,

λ′′ trace Xε � μTb − OPT(ε) � μTb − OPT(ε0),

and this shows that the matrix Xε � 0 is bounded.

Now, note that the feasibility of λε implies that the quantity bi + 〈Ri, Yε〉 + hi
Tλε is nonnegative for all i ∈ [l].

Since Yε is bounded, we deduce the existence of a lower boundmi ∈ R such that hi
Tλε � mi (∀ i ∈ [l]). Similarly,

since h0
Tλε � OPT(ε0) − 〈C, Xε〉 − 〈R0, Yε〉, there is a scalar m0 such that h0

Tλε � m0. We now use the fact

that every vector (−hi) may be written as a positive combination of the hk, (k ∈ {0} ∪ [l]), and we obtain that the

quantities hi
Tλε are also bounded from above. Let us denote by H0 the matrix [h0,H]; we have just proved that

the vector HT
0λ

ε is bounded:

∃m ∈ R : ‖HT
0λ

ε‖2 � m

(the latter bound does not depend on ε). Note that one may assume without loss of generality that λε ∈ ImH0

(otherwise we consider the projection λε
P of λε on ImH0 which is also a solution since HT

0λ
ε = HT

0λ
ε
P ). We know

from the Courant-Fisher theorem that the smallest positive eigenvalue of H0H
T
0 satisfies:

λ>
min

(
H0H

T
0

)
= min

v∈ImH0\{0}
vTH0H

T
0v

vTv
.
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Therefore, since we have assumed λε ∈ ImH0:

‖λε‖2 � ‖HT
0λ

ε‖2

λ>
min

(
H0H

T
0

) � m2

λ>
min

(
H0H

T
0

) .

It remains to show that the dual optimal variableμε is bounded. Our strict primal feasibility assumption (which

does not entail generality thanks to Lemma 8) ensures the existence of a matrix Y � 0 and a vector λ such that

∀ i ∈ [l], 〈Ri, Y〉 + bi + hi
Tλ = ηi > 0.

By dual feasibility, R0 + ∑
i μ

ε
i Ri is a negative semidefinite matrix, and we have:

0 � 〈R0, Y〉 +
l∑

i=1

με
i 〈Ri, Y〉 = 〈R0, Y〉 +

l∑
i=1

με
i (ηi − bi − hi

Tλ).

Hence, we have the following inequalities:

∀ k ∈ [l], ηkμ
ε
k �

l∑
i=1

ηiμ
ε
i � bTμε + λ

T
Hμε − 〈R0, Y〉

= OPT(ε) − λ
T
h0 − 〈R0, Y〉

� OPT(0) − λ
T
h0 − 〈R0, Y〉,

and we have shown that με � 0 is bounded.

We can therefore construct a sequence of pairs of primal and dual optimal solutions (Xεk , Yεk ,λεk ,μεk )k∈N

that converges, with εk −→
k→∞ 0, εk > 0. In this sequence, the limit X0 of Xεk is of rank at most r, because the

rank is a lower semicontinuous function and rank Xεk � r for all k ∈ N. It remains to show that (X0, Y0,λ0) is a

solution of Problem (PCMB). The ε-perturbed KKT conditions must hold for all k ∈ N, and so they hold for the pair(
(X0, Y0,λ0),μ0

)
by taking the limit (this works because S

+
n is closed). This concludes the proof of the existence

of a solution in which rank X � r.

It remains to show the second statement of this theorem, namely that if C �= 0 and r := mini∈[l] rank Mi , then

the rank of X is bounded by n − r + r for any solution (X, Y,λ) of (PCMB).

Let (X∗, Y∗,λ∗) be a solution of Problem (PCMB). If the primal problem is strictly feasible, then there exists a

Lagrange multiplier μ∗ � 0 such that the KKT conditions described at the beginning of this proof are satisfied.

Since C �= 0, we have μ∗ �= 0, and we can write:

rank

⎛
⎝∑

i∈[l]
μ∗

i Mi − C

⎞
⎠ � r − r.

Hence, since by complementary slackness, X∗ belongs to the nullspace of (
∑

i∈[l] μ∗
i Mi − C), we find rank X∗ �

n − r + r.

If the primal problem is not strictly feasible, there must be an index i ∈ [l] such that 〈Mi, X
∗〉 = 0 (otherwise,

(η1I, Y
∗ + η2I,λ

∗) would be strictly feasible for sufficiently small positive reals η1 and η2). Therefore, X
∗ is in the

nullspace of a matrix of rank larger than r, and rank X∗ � n − r � n − r + r. �

B. Proof of Theorem 5

We assume that Problems (PCMB) and (DCMB) are feasible, and for η � 0 we consider the following pair of primal

and dual perturbed problems.

sup 〈C, X〉 + 〈R0, Y〉 + h0
Tλ,

s.t. 〈Mi, X〉 � bi + 〈Ri, Y〉 + hi
Tλ i ∈ [l], (Pη)

η (trace X + trace Y) � 1,

X � 0, Y � 0
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and

inf
μ�0, σ�0

l∑
i=1

μibi + σ,

s.t.

l∑
i=1

μiMi + σηI � C, (Dη)

R0 +
l∑

i=1

μiRi − σηI � 0,

h0 + Hμ = 0.

It is clear that the feasibilityof Problem(PCMB) implies thatof (Pη) ifη > 0 is sufficiently small. Letμbeadual feasible

variable for Problem (DCMB), and σ > 0 be sufficiently large so that
∑l

i=1 μiMi + σηI � C and R0 + ∑l
i=1 μiRi −

σηI ≺ 0: the refined Slater condition holds for the perturbed problem (Dη). Hence, by Theorem 6, there exists

a solution (Xη, Yη,λη) of Problem (Pη) in which rank Xη � r. We next show that 〈C, Xη〉 + 〈R0, Yη〉 + h0
Tλη

converges to the value of the supremum in Problem (PCMB) as η → 0+, which will complete this proof.

Let ηk be a positive sequence decreasing to 0, and define γk := 〈C, Xηk 〉 + 〈R0, Yηk 〉 + h0
Tληk . It is clear that

γk is a nondecreasing sequence, because the constraints in Problem (Pη) become looser as η gets smaller, and γk is

bounded from above by the value of the supremum γ ∗ in Problem (PCMB). Therefore, (γk)k∈N converges. Assume (ad

absurdum) that the limit of this sequence is γ∞ < γ ∗. Then, there are some variables (X0, Y0,λ0) that are feasible

for (PCMB), and such that 〈C, X0〉 + 〈R0, Y0〉 + h0
Tλ0 > γ∞. But then, (X0, Y0,λ0) is also feasible for Problem (Pη),

when η � η0 := (trace X0 + trace Y0)
−1. For any k ∈ N such that ηk � η0, this contradicts the optimality of

(Xηk , Yηk ,ληk ) for Problem (Pηk
). Hence, γ∞ = γ ∗ and the proof is complete.
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