16,998 research outputs found

    Size-dependent bandgap and particle size distribution of colloidal semiconductor nanocrystals

    Get PDF
    A new analytical expression for the size-dependent bandgap of colloidal semiconductor nanocrystals is proposed within the framework of the finite-depth square-well effective mass approximation in order to provide a quantitative description of the quantum confinement effect. This allows one to convert optical spectroscopic data (photoluminescence spectrum and absorbance edge) into accurate estimates for the particle size distributions of colloidal systems even if the traditional effective mass model is expected to fail, which occurs typically for very small particles belonging to the so-called strong confinement limit. By applying the reported theoretical methodologies to CdTe nanocrystals synthesized through wet chemical routes, size distributions are inferred and compared directly to those obtained from atomic force microscopy and transmission electron microscopy. This analysis can be used as a complementary tool for the characterization of nanocrystal samples of many other systems such as the II-VI and III-V semiconductor materials.Comment: 9 pages, 5 figure

    Luminescence in sulfides : a rich history and a bright future

    Get PDF
    Sulfide-based luminescent materials have attracted a lot of attention for a wide range of photo-, cathodo- and electroluminescent applications. Upon doping with Ce3+ and Eu2+, the luminescence can be varied over the entire visible region by appropriately choosing the composition of the sulfide host. Main application areas are flat panel displays based on thin film electroluminescence, field emission displays and ZnS-based powder electroluminescence for backlights. For these applications, special attention is given to BaAl2S4:Eu, ZnS:Mn and ZnS:Cu. Recently, sulfide materials have regained interest due to their ability (in contrast to oxide materials) to provide a broad band, Eu2+-based red emission for use as a color conversion material in white-light emitting diodes (LEDs). The potential application of rare-earth doped binary alkaline-earth sulfides, like CaS and SrS, thiogallates, thioaluminates and thiosilicates as conversion phosphors is discussed. Finally, this review concludes with the size-dependent luminescence in intrinsic colloidal quantum dots like PbS and CdS, and with the luminescence in doped nanoparticles

    Tuning and Locking the Localized Surface Plasmon Resonances of CuS (Covellite) Nanocrystals by an Amorphous CuPdxS Shell

    No full text
    [Image: see text] We demonstrate the stabilization of the localized surface plasmon resonance (LSPR) in a semiconductor-based core–shell heterostructure made of a plasmonic CuS core embedded in an amorphous-like alloyed CuPd(x)S shell. This heterostructure is prepared by reacting the as-synthesized CuS nanocrystals (NCs) with Pd(2+) cations at room temperature in the presence of an electron donor (ascorbic acid). The reaction starts from the surface of the CuS NCs and proceeds toward the center, causing reorganization of the initial lattice and amorphization of the covellite structure. According to density functional calculations, Pd atoms are preferentially accommodated between the bilayer formed by the S–S covalent bonds, which are therefore broken, and this can be understood as the first step leading to amorphization of the particles upon insertion of the Pd(2+) ions. The position and intensity in near-infrared LSPRs can be tuned by altering the thickness of the shell and are in agreement with the theoretical optical simulation based on the Mie–Gans theory and Drude model. Compared to the starting CuS NCs, the amorphous CuPd(x)S shell in the core–shell nanoparticles makes their plasmonic response less sensitive to a harsh oxidation environment (generated, for example, by the presence of I(2))

    Size Dependence of the Multiple Exciton Generation Rate in CdSe Quantum Dots

    Full text link
    The multiplication rates of hot carriers in CdSe quantum dots are quantified using an atomistic pseudopotential approach and first order perturbation theory. Both excited holes and electrons are considered, and electron-hole Coulomb interactions are accounted for. We find that holes have much higher multiplication rates than electrons with the same excess energy due to the larger density of final states (positive trions). When electron-hole pairs are generated by photon absorption, however, the net carrier multiplication rate is dominated by photogenerated electrons, because they have on average much higher excess energy. We also find, contrary to earlier studies, that the effective Coulomb coupling governing carrier multiplication is energy dependent. We show that smaller dots result in a decrease in the carrier multiplication rate for a given absolute photon energy. However, if the photon energy is scaled by the volume dependent optical gap, then smaller dots exhibit an enhancement in carrier multiplication for a given relative energy.Comment: 19 pages, 6 figure

    Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions

    Get PDF
    Over the past decade, tremendous progress has been achieved in the development of nanoscale semiconductor materials with a wide range of bandgaps by alloying different individual semiconductors. These materials include traditional II-VI and III-V semiconductors and their alloys, inorganic and hybrid perovskites, and the newly emerging 2D materials. One important common feature of these materials is that their nanoscale dimensions result in a large tolerance to lattice mismatches within a monolithic structure of varying composition or between the substrate and target material, which enables us to achieve almost arbitrary control of the variation of the alloy composition. As a result, the bandgaps of these alloys can be widely tuned without the detrimental defects that are often unavoidable in bulk materials, which have a much more limited tolerance to lattice mismatches. This class of nanomaterials could have a far-reaching impact on a wide range of photonic applications, including tunable lasers, solid-state lighting, artificial photosynthesis and new solar cells
    corecore