60,470 research outputs found

    Semi-supervised Learning with the EM Algorithm: A Comparative Study between Unstructured and Structured Prediction

    Full text link
    Semi-supervised learning aims to learn prediction models from both labeled and unlabeled samples. There has been extensive research in this area. Among existing work, generative mixture models with Expectation-Maximization (EM) is a popular method due to clear statistical properties. However, existing literature on EM-based semi-supervised learning largely focuses on unstructured prediction, assuming that samples are independent and identically distributed. Studies on EM-based semi-supervised approach in structured prediction is limited. This paper aims to fill the gap through a comparative study between unstructured and structured methods in EM-based semi-supervised learning. Specifically, we compare their theoretical properties and find that both methods can be considered as a generalization of self-training with soft class assignment of unlabeled samples, but the structured method additionally considers structural constraint in soft class assignment. We conducted a case study on real-world flood mapping datasets to compare the two methods. Results show that structured EM is more robust to class confusion caused by noise and obstacles in features in the context of the flood mapping application

    Network modeling of patients' biomolecular profiles for clinical phenotype/outcome prediction

    Get PDF
    Methods for phenotype and outcome prediction are largely based on inductive supervised models that use selected biomarkers to make predictions, without explicitly considering the functional relationships between individuals. We introduce a novel network-based approach named Patient-Net (P-Net) in which biomolecular profiles of patients are modeled in a graph-structured space that represents gene expression relationships between patients. Then a kernel-based semi-supervised transductive algorithm is applied to the graph to explore the overall topology of the graph and to predict the phenotype/clinical outcome of patients. Experimental tests involving several publicly available datasets of patients afflicted with pancreatic, breast, colon and colorectal cancer show that our proposed method is competitive with state-of-the-art supervised and semi-supervised predictive systems. Importantly, P-Net also provides interpretable models that can be easily visualized to gain clues about the relationships between patients, and to formulate hypotheses about their stratification

    Bethe Projections for Non-Local Inference

    Full text link
    Many inference problems in structured prediction are naturally solved by augmenting a tractable dependency structure with complex, non-local auxiliary objectives. This includes the mean field family of variational inference algorithms, soft- or hard-constrained inference using Lagrangian relaxation or linear programming, collective graphical models, and forms of semi-supervised learning such as posterior regularization. We present a method to discriminatively learn broad families of inference objectives, capturing powerful non-local statistics of the latent variables, while maintaining tractable and provably fast inference using non-Euclidean projected gradient descent with a distance-generating function given by the Bethe entropy. We demonstrate the performance and flexibility of our method by (1) extracting structured citations from research papers by learning soft global constraints, (2) achieving state-of-the-art results on a widely-used handwriting recognition task using a novel learned non-convex inference procedure, and (3) providing a fast and highly scalable algorithm for the challenging problem of inference in a collective graphical model applied to bird migration.Comment: minor bug fix to appendix. appeared in UAI 201

    Learning to Make Predictions on Graphs with Autoencoders

    Full text link
    We examine two fundamental tasks associated with graph representation learning: link prediction and semi-supervised node classification. We present a novel autoencoder architecture capable of learning a joint representation of both local graph structure and available node features for the multi-task learning of link prediction and node classification. Our autoencoder architecture is efficiently trained end-to-end in a single learning stage to simultaneously perform link prediction and node classification, whereas previous related methods require multiple training steps that are difficult to optimize. We provide a comprehensive empirical evaluation of our models on nine benchmark graph-structured datasets and demonstrate significant improvement over related methods for graph representation learning. Reference code and data are available at https://github.com/vuptran/graph-representation-learningComment: Published as a conference paper at IEEE DSAA 201

    Well-M³N: A Maximum-Margin Approach to Unsupervised Structured Prediction

    Full text link
    Unsupervised structured prediction is of fundamental importance for the clustering and classification of unannotated structured data. To date, its most common approach still relies on the use of structural probabilistic models and the expectation-maximization (EM) algorithm. Conversely, structural maximum-margin approaches, despite their extensive success in supervised and semi-supervised classification, have not raised equivalent attention in the unsupervised case. For this reason, in this paper we propose a novel approach that extends the maximum-margin Markov networks (M3N) to an unsupervised training framework. The main contributions of our extension are new formulations for the feature map and loss function of M3N that decouple the labels from the measurements and support multiple ground-truth training. Experiments on two challenging segmentation datasets have achieved competitive accuracy and generalization compared to other unsupervised algorithms such as k-means, EM and unsupervised structural SVM, and comparable performance to a contemporary deep learning-based approach
    • …
    corecore