21,835 research outputs found

    Semi-Supervised Sparse Coding

    Full text link
    Sparse coding approximates the data sample as a sparse linear combination of some basic codewords and uses the sparse codes as new presentations. In this paper, we investigate learning discriminative sparse codes by sparse coding in a semi-supervised manner, where only a few training samples are labeled. By using the manifold structure spanned by the data set of both labeled and unlabeled samples and the constraints provided by the labels of the labeled samples, we learn the variable class labels for all the samples. Furthermore, to improve the discriminative ability of the learned sparse codes, we assume that the class labels could be predicted from the sparse codes directly using a linear classifier. By solving the codebook, sparse codes, class labels and classifier parameters simultaneously in a unified objective function, we develop a semi-supervised sparse coding algorithm. Experiments on two real-world pattern recognition problems demonstrate the advantage of the proposed methods over supervised sparse coding methods on partially labeled data sets

    Robust Image Analysis by L1-Norm Semi-supervised Learning

    Full text link
    This paper presents a novel L1-norm semi-supervised learning algorithm for robust image analysis by giving new L1-norm formulation of Laplacian regularization which is the key step of graph-based semi-supervised learning. Since our L1-norm Laplacian regularization is defined directly over the eigenvectors of the normalized Laplacian matrix, we successfully formulate semi-supervised learning as an L1-norm linear reconstruction problem which can be effectively solved with sparse coding. By working with only a small subset of eigenvectors, we further develop a fast sparse coding algorithm for our L1-norm semi-supervised learning. Due to the sparsity induced by sparse coding, the proposed algorithm can deal with the noise in the data to some extent and thus has important applications to robust image analysis, such as noise-robust image classification and noise reduction for visual and textual bag-of-words (BOW) models. In particular, this paper is the first attempt to obtain robust image representation by sparse co-refinement of visual and textual BOW models. The experimental results have shown the promising performance of the proposed algorithm.Comment: This is an extension of our long paper in ACM MM 201

    Sample Complexity Analysis for Learning Overcomplete Latent Variable Models through Tensor Methods

    Full text link
    We provide guarantees for learning latent variable models emphasizing on the overcomplete regime, where the dimensionality of the latent space can exceed the observed dimensionality. In particular, we consider multiview mixtures, spherical Gaussian mixtures, ICA, and sparse coding models. We provide tight concentration bounds for empirical moments through novel covering arguments. We analyze parameter recovery through a simple tensor power update algorithm. In the semi-supervised setting, we exploit the label or prior information to get a rough estimate of the model parameters, and then refine it using the tensor method on unlabeled samples. We establish that learning is possible when the number of components scales as k=o(dp/2)k=o(d^{p/2}), where dd is the observed dimension, and pp is the order of the observed moment employed in the tensor method. Our concentration bound analysis also leads to minimax sample complexity for semi-supervised learning of spherical Gaussian mixtures. In the unsupervised setting, we use a simple initialization algorithm based on SVD of the tensor slices, and provide guarantees under the stricter condition that k≤βdk\le \beta d (where constant β\beta can be larger than 11), where the tensor method recovers the components under a polynomial running time (and exponential in β\beta). Our analysis establishes that a wide range of overcomplete latent variable models can be learned efficiently with low computational and sample complexity through tensor decomposition methods.Comment: Title change
    • …
    corecore