2,306 research outputs found

    A survey of data mining techniques for social media analysis

    Get PDF
    Social network has gained remarkable attention in the last decade. Accessing social network sites such as Twitter, Facebook LinkedIn and Google+ through the internet and the web 2.0 technologies has become more affordable. People are becoming more interested in and relying on social network for information, news and opinion of other users on diverse subject matters. The heavy reliance on social network sites causes them to generate massive data characterised by three computational issues namely; size, noise and dynamism. These issues often make social network data very complex to analyse manually, resulting in the pertinent use of computational means of analysing them. Data mining provides a wide range of techniques for detecting useful knowledge from massive datasets like trends, patterns and rules [44]. Data mining techniques are used for information retrieval, statistical modelling and machine learning. These techniques employ data pre-processing, data analysis, and data interpretation processes in the course of data analysis. This survey discusses different data mining techniques used in mining diverse aspects of the social network over decades going from the historical techniques to the up-to-date models, including our novel technique named TRCM. All the techniques covered in this survey are listed in the Table.1 including the tools employed as well as names of their authors

    An Efficient Cross-Domain Recommendation Technique in Cold-Start Situations

    Get PDF
    Most of the recent studies on recommender systems are focused on single domain recommendation systems. In the single domain recommendation systems, the items that are used for training and test data set are belongs to within the same domain. Cross-site domains or item recommendations in multi-domain environment are available in Amazon i.e. it incorporate two or more domains. Few research studies are done on the cross-site recommendation systems. Cross-site recommendations provide the relationship between the two sets of items from various domains. They can provide the extra information about the users of a target domain and recommendations will be done based on that. In this paper, we will study cross-site recommendation model on the cold start situation, where the purchase history is not available for the new user. Cold-start is the well-known issue in the area of recommendation systems. It seriously affect the recommendations in the collaborative filtering approaches. In this paper, we propose a new solution to recommend products from e-commerce websites to users at social networking sites. a noteworthy issue is how to leverage knowledge from social networking websites when there is no purchase history for a customer especially in cold start situations.in particular we proposed the solution for cold start recommendation by linking the users across social networking sites and e-commerce websites i.e. customers who have social network identities and have purchased on e-commerce websites as a bridge to map user’s social networking features in to another feature representation which can be easier for product recommendation. Here we propose to learn by using recurrent neural networks both user’s and product’s feature representations called user embedding and product embedding from the data collected from e-commerce website and then apply a modified gradient boosting trees method to transform user’s social networking features in to user embedding. Once found, then develop a feature-based matrix factorization approach which can leverage the learnt user embedding for the cold-start product recommendation. Experimental results shows that our approach effectively works and gives the best recommended results in cold start situations

    Pyramid: Enhancing Selectivity in Big Data Protection with Count Featurization

    Full text link
    Protecting vast quantities of data poses a daunting challenge for the growing number of organizations that collect, stockpile, and monetize it. The ability to distinguish data that is actually needed from data collected "just in case" would help these organizations to limit the latter's exposure to attack. A natural approach might be to monitor data use and retain only the working-set of in-use data in accessible storage; unused data can be evicted to a highly protected store. However, many of today's big data applications rely on machine learning (ML) workloads that are periodically retrained by accessing, and thus exposing to attack, the entire data store. Training set minimization methods, such as count featurization, are often used to limit the data needed to train ML workloads to improve performance or scalability. We present Pyramid, a limited-exposure data management system that builds upon count featurization to enhance data protection. As such, Pyramid uniquely introduces both the idea and proof-of-concept for leveraging training set minimization methods to instill rigor and selectivity into big data management. We integrated Pyramid into Spark Velox, a framework for ML-based targeting and personalization. We evaluate it on three applications and show that Pyramid approaches state-of-the-art models while training on less than 1% of the raw data

    Graph Convolutional Neural Networks for Web-Scale Recommender Systems

    Full text link
    Recent advancements in deep neural networks for graph-structured data have led to state-of-the-art performance on recommender system benchmarks. However, making these methods practical and scalable to web-scale recommendation tasks with billions of items and hundreds of millions of users remains a challenge. Here we describe a large-scale deep recommendation engine that we developed and deployed at Pinterest. We develop a data-efficient Graph Convolutional Network (GCN) algorithm PinSage, which combines efficient random walks and graph convolutions to generate embeddings of nodes (i.e., items) that incorporate both graph structure as well as node feature information. Compared to prior GCN approaches, we develop a novel method based on highly efficient random walks to structure the convolutions and design a novel training strategy that relies on harder-and-harder training examples to improve robustness and convergence of the model. We also develop an efficient MapReduce model inference algorithm to generate embeddings using a trained model. We deploy PinSage at Pinterest and train it on 7.5 billion examples on a graph with 3 billion nodes representing pins and boards, and 18 billion edges. According to offline metrics, user studies and A/B tests, PinSage generates higher-quality recommendations than comparable deep learning and graph-based alternatives. To our knowledge, this is the largest application of deep graph embeddings to date and paves the way for a new generation of web-scale recommender systems based on graph convolutional architectures.Comment: KDD 201

    Multi-Target Prediction: A Unifying View on Problems and Methods

    Full text link
    Multi-target prediction (MTP) is concerned with the simultaneous prediction of multiple target variables of diverse type. Due to its enormous application potential, it has developed into an active and rapidly expanding research field that combines several subfields of machine learning, including multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, network inference, and matrix completion. In this paper, we present a unifying view on MTP problems and methods. First, we formally discuss commonalities and differences between existing MTP problems. To this end, we introduce a general framework that covers the above subfields as special cases. As a second contribution, we provide a structured overview of MTP methods. This is accomplished by identifying a number of key properties, which distinguish such methods and determine their suitability for different types of problems. Finally, we also discuss a few challenges for future research
    • 

    corecore