2,211 research outputs found

    Hamiltonicity, independence number, and pancyclicity

    Get PDF
    A graph on n vertices is called pancyclic if it contains a cycle of length l for all 3 \le l \le n. In 1972, Erdos proved that if G is a Hamiltonian graph on n > 4k^4 vertices with independence number k, then G is pancyclic. He then suggested that n = \Omega(k^2) should already be enough to guarantee pancyclicity. Improving on his and some other later results, we prove that there exists a constant c such that n > ck^{7/3} suffices

    Parity balance of the ii-th dimension edges in Hamiltonian cycles of the hypercube

    Full text link
    Let n≥2n\geq 2 be an integer, and let i∈{0,...,n−1}i\in\{0,...,n-1\}. An ii-th dimension edge in the nn-dimensional hypercube QnQ_n is an edge v1v2{v_1}{v_2} such that v1,v2v_1,v_2 differ just at their ii-th entries. The parity of an ii-th dimension edge \edg{v_1}{v_2} is the number of 1's modulus 2 of any of its vertex ignoring the ii-th entry. We prove that the number of ii-th dimension edges appearing in a given Hamiltonian cycle of QnQ_n with parity zero coincides with the number of edges with parity one. As an application of this result it is introduced and explored the conjecture of the inscribed squares in Hamiltonian cycles of the hypercube: Any Hamiltonian cycle in QnQ_n contains two opposite edges in a 4-cycle. We prove this conjecture for n≤7n \le 7, and for any Hamiltonian cycle containing more than 2n−22^{n-2} edges in the same dimension. This bound is finally improved considering the equi-independence number of Qn−1Q_{n-1}, which is a concept introduced in this paper for bipartite graphs

    A note on K4-closures in Hamiltonian graph theory

    Get PDF
    Let G=(V, E) be a 2-connected graph. We call two vertices u and v of G a K4-pair if u and v are the vertices of degree two of an induced subgraph of G which is isomorphic to K4 minus an edge. Let x and y be the common neighbors of a K4-pair u, v in an induced K4−e. We prove the following result: If N(x)N(y)N(u)N(v){u,v}, then G is hamiltonian if and only if G+uv is h amiltonian. As a consequence, a claw-free graph G is hamiltonian if and only if G+uv is hamiltonian, where u,v is a K4-pair. Based on these results we define socalled K4-closures of G. We give infinite classes of graphs with small maximum degree and large diameter, and with many vertices of degree two having complete K4-closures

    The Laplacian Eigenvalues and Invariants of Graphs

    Full text link
    In this paper, we investigate some relations between the invariants (including vertex and edge connectivity and forwarding indices) of a graph and its Laplacian eigenvalues. In addition, we present a sufficient condition for the existence of Hamiltonicity in a graph involving its Laplacian eigenvalues.Comment: 10 pages,Filomat, 201

    Subgraphs, Closures and Hamiltonicity

    Get PDF
    Closure theorems in hamiltonian graph theory are of the following type: Let G be a 2- connected graph and let u, v be two distinct nonadjacent vertices of G. If condition c(u,v) holds, then G is hamiltonian if and only if G + uv is hamiltonian. We discuss several results of this type in which u and v are vertices of a subgraph H of G on four vertices and c(u, v) is a condition on the neighborhoods of the vertices of H (in G). We also discuss corresponding sufficient conditions for hamiltonicity of G

    An extensive English language bibliography on graph theory and its applications, supplement 1

    Get PDF
    Graph theory and its applications - bibliography, supplement

    A closure concept based on neighborhood unions of independent triples

    Get PDF
    The well-known closure concept of Bondy and Chvatal is based on degree-sums of pairs of nonadjacent (independent) vertices. We show that a more general concept due to Ainouche and Christofides can be restated in terms of degree-sums of independent triples. We introduce a closure concept which is based on neighborhood unions of independent triples and which also generalizes the closure concept of Bondy and Chvatal
    • …
    corecore