4 research outputs found

    Semidefinite Programming Approach for the Quadratic Assignment Problem with a Sparse Graph

    Full text link
    The matching problem between two adjacency matrices can be formulated as the NP-hard quadratic assignment problem (QAP). Previous work on semidefinite programming (SDP) relaxations to the QAP have produced solutions that are often tight in practice, but such SDPs typically scale badly, involving matrix variables of dimension n2n^2 where n is the number of nodes. To achieve a speed up, we propose a further relaxation of the SDP involving a number of positive semidefinite matrices of dimension O(n)\mathcal{O}(n) no greater than the number of edges in one of the graphs. The relaxation can be further strengthened by considering cliques in the graph, instead of edges. The dual problem of this novel relaxation has a natural three-block structure that can be solved via a convergent Augmented Direction Method of Multipliers (ADMM) in a distributed manner, where the most expensive step per iteration is computing the eigendecomposition of matrices of dimension O(n)\mathcal{O}(n). The new SDP relaxation produces strong bounds on quadratic assignment problems where one of the graphs is sparse with reduced computational complexity and running times, and can be used in the context of nuclear magnetic resonance spectroscopy (NMR) to tackle the assignment problem.Comment: 31 page

    Semi-definite programming relaxation of quadratic assignment problems based on nonredundant matrix splitting

    No full text
    10.1007/s10589-014-9663-yComputational Optimization and Applications601171-198CPPP

    Calculating Sparse and Dense Correspondences for Near-Isometric Shapes

    Get PDF
    Comparing and analysing digital models are basic techniques of geometric shape processing. These techniques have a variety of applications, such as extracting the domain knowledge contained in the growing number of digital models to simplify shape modelling. Another example application is the analysis of real-world objects, which itself has a variety of applications, such as medical examinations, medical and agricultural research, and infrastructure maintenance. As methods to digitalize physical objects mature, any advances in the analysis of digital shapes lead to progress in the analysis of real-world objects. Global shape properties, like volume and surface area, are simple to compare but contain only very limited information. Much more information is contained in local shape differences, such as where and how a plant grew. Sadly the computation of local shape differences is hard as it requires knowledge of corresponding point pairs, i.e. points on both shapes that correspond to each other. The following article thesis (cumulative dissertation) discusses several recent publications for the computation of corresponding points: - Geodesic distances between points, i.e. distances along the surface, are fundamental for several shape processing tasks as well as several shape matching techniques. Chapter 3 introduces and analyses fast and accurate bounds on geodesic distances. - When building a shape space on a set of shapes, misaligned correspondences lead to points moving along the surfaces and finally to a larger shape space. Chapter 4 shows that this also works the other way around, that is good correspondences are obtain by optimizing them to generate a compact shape space. - Representing correspondences with a “functional map” has a variety of advantages. Chapter 5 shows that representing the correspondence map as an alignment of Green’s functions of the Laplace operator has similar advantages, but is much less dependent on the number of eigenvectors used for the computations. - Quadratic assignment problems were recently shown to reliably yield sparse correspondences. Chapter 6 compares state-of-the-art convex relaxations of graphics and vision with methods from discrete optimization on typical quadratic assignment problems emerging in shape matching
    corecore